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Preface

Model-Driven Architecture (MDA) is an initiative proposed by the Object Man-
agement Group (OMG) for platform-generic software development. MDA sep-
arates the specification of system functionality from the implementation on a
specific platform. It is aimed at making software assets more resilient to changes
caused by emerging technologies. While stressing the importance of modeling,
the MDA initiative covers a wide spectrum of research areas. Further efforts are
required to bring them into a coherent approach based on open standards and
supported by matured tools and techniques.

This volume contains the selected papers of two workshops on “Model-Driven
Architecture – Foundations and Applications” (MDAFA): MDAFA 2003 held
at the University of Twente, Twente, The Netherlands, June 26–27, 2003, and
MDAFA 2004 held at Linköping University, Linköping, Sweden, June 10–11,
2004. The goal of the workshops was to understand the foundations of MDA, to
share experience in applying MDA techniques and tools, and to outline future
research directions. The workshops organizers encouraged authors of accepted
papers to re-submit their papers to a post-workshop reviewing process; 15 of
these papers were accepted to appear in this volume on MDA.

Our special thanks go to the program committee, which was willing to re-
view the papers a second time, and to our assistants Henrik Larsson and Bodil
Mattson-Kihlström, who took a great share of the workshop organization. We
would also like to thank the supporters of the workshop, in particular the OMG,
for taking part in the enthusiasm about scientific workshops on MDA. One of the
invited speakers of MDAFA 2004, Dr. Liping Zhao from the Victoria University
of Manchester, contributed her paper “Designing Application Domain Models
with Roles” to the volume, which sheds new light on the relationship of MDA
and role modeling. Thanks a lot.

In autumn 2004, the workshop joined forces with other European workshops
on MDA, creating the new European Conference on Model-Driven Architec-
ture – Foundations and Applications (ECMDA-FA, http://www.ecmda-fa.org).
It will take place for the first time on Nov. 7–10, 2005 in Nuremberg, Germany,
and is planned as a yearly conference, collecting papers on the foundations and
applications of MDA. See you in Nuremberg!

June 2005 Uwe Aßmann, Arend Rensink, Mehmet Aksit
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Designing Application Domain Models with Roles 

Liping Zhao 

School of Informatics, University of Manchester, 
M60 1QD, Manchester, United Kingdom  
liping.zhao@manchester.ac.uk 

Abstract. This article is motivated by two related observations. First, roles, re-
sponsibilities and collaborators are central to object interactions, and viewing of 
objects from these three dimensions can yield a more dynamic and flexible de-
sign than that from the class dimension. Yet the orthodox object modeling ap-
proaches, such as UML, still adopt the class view of objects. Second, models 
have become increasingly important in constructing application systems. For 
example, OMG’s Model Driven Architecture (MDA) uses models as building 
blocks to support application development. Based on the assumption that ob-
ject-oriented approaches will still dominate the development of the MDA mod-
els, this article posits that the new models be oriented towards the roles, not to-
wards the classes; it shows why roles are importance to MDA model design. 

1   Why Pure Classes Not Enough 

Object-oriented design has been dominated by class design. For example, Meyers [27] 
recommended 50 ways to improve programs and designs, but 34 of them are con-
cerned with the design of classes and the rest 16 is about memory management and 
compiler optimization. Consequently, object-oriented modeling also focuses on class 
modeling [34]. The Unified Modeling Language (UML) [10] provides 12 diagrams 
and 8 of them are centered on class diagrams. The rest 4 diagrams, apart from the Use 
Case Diagram, are about model management. 

The class concept is indeed central to object technology. A class is not only a de-
scription of the objects, but also an implementation technique for data abstraction, 
encapsulation and information hiding [23, 24]. The importance of classes to object 
technology is clear and undeniable, as Meyer maintained ([26], p.165): “Objects re-
main important to describe the execution of an O-O system. But the basic notion, 
from which everything in object technology derives, is class…” Henderson-Seller 
([14], p34) also remarked: “In fact, ‘object-oriented’ is really a misnomer because 
what we really should be talking about is ‘class-oriented,’ since the essence of the 
object-oriented technique is actually the class.” 

Despite of its importance, the class dimension is limited in its ability to describe 
objects. First, the class view of objects is static. A class is basically a mold for making 
objects [26] and classifying objects [41].  Once an object is created for a class, it be-
longs to that class forever, hence “Once an engineer, forever an engineer.” Although 
an object may appear to be able to change its type in a polymorphic type hierarchy, it 
still cannot change its base class and behavior. Second, the class centered view tends 
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to place too much emphasis on encapsulation and class boundary, and drives object 
design like procedural design. As a result, classes are often over-specified for com-
pleteness. 

The limitations of pure classes have long been recognized. As early as in 1989, 
Beck and Cunningham [3] already pointed out: “One of the distinguishing features of 
object design is that no object is an island. All objects stand in relationship to others, 
on whom they reply on services and control 3.” To capture object relationship, they 
introduced CRC (Class, Responsibility and Collaboration) cards, an index card tech-
nique invented by Cunningham [8]. Each CRC card describes an object in three di-
mensions: class name, responsibilities and collaborators (Fig. 1). These three dimen-
sions, as Beck and Cunningham 3 stated, identify the role of an object in a design. 
Hence the focal point of a CRC card is the role, the centre of object collaboration. 
This important connotation was made explicit when Kendall 16 renamed CRC cards 
as RRC (Role, Responsibility and Collaboration) cards. Wirfs-Brock [39] has recently 
extended her responsibility-driven approach [40] with roles, responsibilities and col-
laborations.  

Similar to CRC cards, Reenskaug [31] developed role models for representing ob-
ject collaborations. A role model consists of a set of roles and their interactions. Fig. 2 
shows a role model consisting of three roles: Model, View and Controller. Wirfs-
Brock and Johnson [38] noted that there is a many-to-many correspondence between 
roles and objects, in that an object may play several different roles and a given role 
may be played by different objects. 

There is a close relationship between CRC cards and role models, as shown in  
Fig. 1 and Fig. 2, such that a role model corresponds to a set of related CRC cards. A 
role model captures a set of roles in collaboration whereas a CRC card represents a 
particular role in a role model. A role model hence can be used to represent an overall 
picture of collaboration with each role being elaborated by a CRC card. 

View

Render the Model.
Transform coordinate.

Controller
Model

Controller

Interpret user input.
Distribute control.

View
Model

Model

Maintain problem
related info.

Broadcast change
notification.

View

Render the Model.
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Controller
Model

View
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Transform coordinate.

Controller
Model
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View
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View
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Fig. 1. CRC cards describing the responsibilities and collaborations of Smalltalk’s Model, 
View and Controller 3 

The basic idea of CRC cards and role models is to capture patterns of object inter-
actions. Wirfs-Brock and Johnson [38] observed that the task in object-oriented de-
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sign is to understand, describe and reuse object interaction patterns. From this view-
point, the idea of the design patterns [11] is similar to that of CRC cards and role 
models. The main contribution of the design patterns, in comparison with CRC cards 
and role models, is that they provide a systematic way of naming and describing ob-
ject interactions. The link between CRC cards, role models and design patterns has 
been explored by many researchers [2, 6, 9, 18, 22, 32, 35, 42]. At the core, CRC 
cards, role models and design patterns can be viewed as different ways of expressing 
roles and collaborations. Cain and Coplien [5] pointed out that the basic abstraction 
in object design is role, a longstanding, stable locus of associated responsibilities in a 
process. The role concept provides the most coherent view of object collaboration. 

Yet, in spite of the above efforts, the concept of roles has not been fully under-
stood; our experience of object-oriented design is still largely limited to class design. 
Coplien [7] recently made an appeal for “putting the object back into OOD.” He reit-
erated that the central point of object orientation is the objects themselves.  

Controller

View

Model
v

c

m

m

d

ControllerController

ViewView

ModelModel
vv

cc

mm

mm

dd

 

Fig. 2. A role model describing the collaboration of Smalltalk’s Model, View and Controller 31 

This article is motivated by two related observations. First, the role concept has not 
gained a widespread acceptance in the orthodox object modeling approaches owing to 
the lack of a proper understanding. Second, models have become increasingly impor-
tant in constructing application systems. For example, OMG’s Model Driven Archi-
tecture ® (MDA) uses models as building blocks to support application development. 
Based on the assumption that object-oriented approaches will still dominate the de-
velopment of the MDA models, this article argues that the new models be oriented 
towards the roles, not towards the classes. We have been doing object design in a 
class-oriented way for so long. It is the time that we do it in a role-oriented way and 
focus the design on object roles, responsibilities and collaborations. With the above 
motivations and discussions, the aim of this article is to introduce role modeling to 
MDA model design.  

This article is presented in the following order. Section 2 provides a survey of 
works on roles and establishes the thesis that roles are a central concept for object 
design. Section 3 relates roles to the MDA model design and demonstrates the impor-
tance of roles to the design of application domain models. Section 4 presents a simple 
role modeling approach and Section 5 concludes the article. 
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2   Working with Roles  

The meaning of role, according to the Oxford English Dictionary, is an actor’s part in 
a play; a person’s or thing’s characteristic or expected function. A role of a person 
characterizes the person’s position in a particular situation, when interacting with 
other people to perform a particular activity [4]. Role is a natural concept for describ-
ing the dynamics of a person or an object. For example, an academic through the eyes 
of her students is a lecturer; a traveler in the eyes of a travel agent and an author by 
her readers. Lecturer, traveler and author are the three roles played by the same per-
son. Each role characterizes the person’s position in a context meaningful from a 
particular viewpoint. Such a viewpoint is an abstraction, which selects the detail of 
the person relevant to her position and suppresses the irrelevant information. Roles 
are therefore stereotypical, describing an object from different viewpoints.  

The defining characteristic of role is responsibility: Role is responsibility-driven. 
Often a role needs to cooperate with other roles to perform some task. Thus a role can 
be described by a list of responsibilities and collaborators. A CRC card therefore is a 
perfect fit to describe a role. However, CRC cards are a design technique. A complete 
design method is needed to take the advantage of CRC cards. This article surveys 
several works on role modeling and design. 

A complete role-based object design method, OOram, was developed by Reen-
skaug [31]. OOram supports the whole lifecycle of object development, from model-
ing, design to implementation. The role models described before are used for OOram 
role modeling. The OOram role modeling approach consists of a comprehensive nota-
tion for representing roles and role interactions. The notation contains many symbols 
for roles. For example, Fig. 2 shows two role symbols: Controller and View use the 
same symbol because they represent the tools where Model uses a different symbol 
because it is a database. OOram differentiates six kinds of role interaction such as 
unspecified interaction, synchronous interaction, asynchronous interaction and 
method return. OOram also offers model synthesis operations for constructing com-
plex role models from simple ones. 

Andersen [1] and Kristensen [20] have also proposed role modeling approaches 
and notations. Kristensen’s role modeling approach separates the static and dynamic 
aspects of roles. Statically, roles are organized in a similar way as classes, using clas-
sification, specialization and aggregation. The dynamic relationships between the 
roles are represented as sequencing, overlapping and iteration. Finally, objects par-
ticipated in a collaboration are grouped as a subject, which has the same intent as a 
role model. Kristensen and Østerbye [21] have also provided a theoretical definition 
of role and a discussion on the practical issues of role implementation. 

Shams-Aliee and Warboys [36] have used roles as an abstraction above the object 
level to support process modeling. They define a process as a group of cooperative 
roles, a similar idea proposed by Cain and Coplien [5]. A process is represented in 
two parts. In the first part, each role of a process is represented using a formalized 
CRC card, which is a CRC card with added path expressions. A path expression 
represents one of the four operations – sequence, selection, concurrency and iteration 
– and is used to constrain the ordering of the responsibilities of a role. A formalized 
CRC card may contain one or more path expressions. In the second part, a process is 
represented as a group of collaborative roles in a Petri Net. A Petri Net shows the 
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interactions and ordering of roles in a process, which is equivalent to a process’ role 
model. This work demonstrates that roles can be used as an abstraction above objects 
to support other concepts, such as processes.  

In other works, roles have been used as an abstraction for framework design [33], 
multiagent systems development [15, 16, 18], component composition [43] and collabo-
rative commerce systems development [30]. Proposals have also been made to extend 
object-oriented languages with role constructs [12, 28, 29]. For example, in [12], the 
Smalltalk language is extended with a role construct and a role hierarchy construct. The 
role construct, similar to the class construct, defines role types; the role hierarchy con-
struct, similar to inheritance, defines role type hierarchies. In [29], the C++ program-
ming language has been extended with set operations to perform role specific functions. 

In addition to roles, other concepts have been developed to support object design, 
e.g. Subject-Oriented Programming (SOP) [13] and Aspect-Oriented Programming 
(AOP) [19]. SOP adds a new level above the pure class level, called subjects to repre-
sent class groupings. A class can be grouped into more than one subject. Hence sub-
jects are higher order classes that support multiple classifications of objects. AOP 
uses the notion of aspects to represent common behaviors of objects. In an object-
oriented system (and owing to encapsulation), a class tends to be cluttered with dif-
ferent behaviors. Some behaviors are not specific to a class of objects, but common to 
objects in other classes. AOP separates out common (crosscutting) behavioral aspects 
from classes at design time and then attach them back to objects at a later stage. Inter-
estingly, Kendall [17] has shown that aspects can be treated as special roles of objects 
whereas Kristensen [20] has used subjects as role groupings or role composition. The 
role concept has therefore provided a single, cohesive viewpoint from which other 
concepts can be understood. 

In spite of the aforementioned works on roles and possibly many more, the impor-
tance of roles has only received a minor attention in the mainstream object-oriented 
modeling and design. For example, roles are not the first class modeling concept in 
UML. One reason might have been the misconception of roles, because roles are 
eventually implemented as classes of objects. This article suggests that the implemen-
tation of roles be separated from the design of roles. The mismatch between object-
oriented languages (mostly class-based) and object-oriented design (object-based) 
means that object design should be separated from object implementation. In object 
design, the focus is on capturing the roles of objects, their responsibilities and col-
laborators, and on identifying and using patterns of object interactions.  This is how 
object design differs from procedural design, as expressed in [3]. 

Another reason for not accepting the role concept in object modeling may be due to 
the unfamiliar and complicated notations offered by existing role modeling ap-
proaches. This article posits that role modeling should focus on the essence of roles, 
rather than the notations. A successful approach to role modeling should take the 
advantage of simple and familiar notations. The article proposes a simple role model-
ing approach based on CRC cards (renamed as RRC cards as Kendall [16]), role mod-
els and interaction diagrams. RRC cards are used to describe roles and interaction 
diagrams to show the inter-role relations. One limitation of RRC cards is that 
collaborations between roles are subsumed within the roles and as such the overall  
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scope or context of role interactions is not clear at first sight [3]. To remedy this limi-
tation, the proposed approach uses role models to represent the context of roles and 
collaborations. Role-responsibility matrices are provided as an alternative representa-
tion to interaction diagrams. 

The proposed approach is similar to the process modeling approach of Shams-
Aliee and Warboys [36] in that it also uses CRC cards for role description, but differs 
in two ways. First, it adopts the original CRC cards notation because the ordering of 
the responsibilities can be represented in interaction diagrams. Second, it uses interac-
tion diagrams instead of Petri Nets as the former is simpler and more familiar to the 
object community. For simplicity our approach does not consider role specialization 
[20, 37].  

3   Roles as a New Modeling Paradigm for Model Driven 
Architecture 

3.1   Model Driven Architecture 

OMG’s Model Driven Architecture is a new architecture that uses models for soft-
ware development [25]. MDA consists of three general types of models, structured 
into three basic layers, as shown in Fig. 3. These model types are briefly described as 
follows. 

• Computation independent model (CIM). A CIM is a domain or business model 
which represents domain specific information, independent of implementation 
technologies. In Fig. 3, domain models, such as Transportation, HealthCare and 
E-Commerce, are structured in the outmost layer of MDA.  Although not speci-
fied in [25], domain models are vertical partitions of application spaces. 

• Platform independent model (PIM). A PIM is a virtual machine independent of 
underlying platform technologies. A PIM provides a system’s services and func-
tions, such as transactions, events and security. In Fig. 3, PIMs are structured in 
the middle layer. Although not specified in [25], platform independent models 
are horizontal partitions of application spaces. In other words, a PIM provides a 
set of generic services and functions across the application domains. For exam-
ple, transaction services are applicable to many domains, such as Finance, E-
Commerce and Telecom. In contrast, a CIM is specific to a particular business 
domain. For example, a public transport model is only applicable to the transpor-
tation domain, though it may be contained within a more general domain, such 
as a Geographic Information System (GIS). 

• Platform specific model (PSM). A PSM combines the specification of a PIM 
with the platform specific specification. A platform specific specification is sup-
ported by a particular platform model, such as a CORBA or Java component 
model. In Fig. 3, PSMs are structured in the inner most layer. 

The reason for the above model organization is to separate business logic from un-
derlying platform technology, thereby enabling the business aspect of an application and 
its technological aspect to evolve independently of each other [25]. The core technolo-
gies that support MDA model development are the Unified Modeling Language 
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Fig. 3. Model Drive Architecture (from www.omg.com) consists of models organized into three 
layers. The outer layer is made of computation independent models (CIM); the middle layer is 
platform independent models (PIM); the inner layer is platform specific models (PSM). 

(UML), the MetaObject Facility (MOF), XML Metadata Interchange (XMI), and the 
Common Warehouse Metamodel (CWM). UML is regarded as a standard modeling 
language for expressing MDA models [25].  

3.2   Importance of Roles to MDA Model Design  

The role concept posses certain characteristics that are required for good object de-
sign. Some of the important role characteristics are presented below.  

Role is responsibility-driven. By focusing on object roles, we can express object in-
teractions in terms of role collaborations; we can specify responsibilities for each role 
and achieve higher cohesion and lower coupling in the design. 

Role is a natural concept for separating the concerns. By partitioning the design 
space into roles, responsibilities and collaborators, we can obtain a set of more or less 
well-separated objects, with clearly defined boundaries and meaningful inter-object 
relations. Each role focuses on the relevant aspect of an object and filters out the ir-
relevant information. When an academic takes on the role of traveler, the focus is on 
the responsibilities and collaborations of the traveler. Similarly, by focusing on the 
Author role, the non-author aspects are ignored. The role concept is therefore about 
separation of concerns.  

Role is dynamic and flexible. An object can play different roles, change roles and 
take on or off roles. An academic can take on an additional role as a year tutor or 
change a year tutor role to an examination officer role. Each of these roles can be 
considered and designed independently of others. For example, the role of an aca-
demic as Traveler is independent of the role of Year Tutor. These two roles live in 
two different contexts and interact with different other roles; the designs of these two 
roles can be modified separately without affecting one another. Hence when an object 
is viewed by its roles, we can obtain a dynamic and flexible design.  

Role is reusable and adaptable. A role is an extrinsic property of an object and 
may be played by different objects; likewise, an object may play several different 
roles. An academic may play several roles; an accountant is a role played by more 
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than one administrative member; a travel agent is a role for all the staff working in a 
travel agent. Roles are therefore reusable abstractions for objects. Role collaborations 
are reusable abstractions for inter-object relations. 

The above role characteristics are highly relevant and important to MDA model 
design. This article believes that the success of MDA rests on the flexibility and 
adaptability of its models with respect to business and technological changes. The 
article proposes that roles be the first-class modeling abstraction for MDA. Unfortu-
nately the current MDA Guide [25] still focuses on the class-based design and the role 
concept remains to be a minor concept for naming the mappings between the classes 
(p.24, [25]). In the following section, a real world example from [9] is used to demon-
strate the importance of roles to designing MDA domain models. Although the exam-
ple is specific to a business domain, it has a general effect on the design of other types 
of MDA models.  

3.3   Designing a Network Point Model with Roles 

A public transport network is a network of bus or train services. Such a network is 
made of points and links between points. A point in a network can represent a  
whole town, a place within a town, an individual vehicle stop, or the bus bay station at 
a stop – depending on the level of granularity of interest to an application (See Fig. 4). 
Therefore, a point in a network is not simply the smallest entity in space. Rather, it is 
a complex entity that may contain other smaller points and links between them and 
that play many roles. A point is thus a complex real world entity, spatially limited in a 
way that can be reasonably presented as a point at one level of abstraction within the 
model, but not at all levels.  

STATION

 

Fig. 4. A point in a public transport network (after [9]) 

Representing a network point is inevitably an important task in developing public 
transport application systems, because the structure of the points determines the struc-
tures of other components that build on the points.  
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Fig. 5. A class hierarchy for point types in a public transport network. All points are by defini-
tion network points. There are already five levels of inheritance even with just seven point 
types. This design is inflexible because inserting a new point type will affect the application 
that uses it. 
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Fig. 6. Redesigning points in Fig. 5 into roles in a public transport network. A point can be 
attached to a specific role depending on its use in the application. This design is flexible be-
cause inserting a new point will not affect the point and the application that uses the point.  

The early design of the point model was class-based; points are represented as 
classes and organized into a hierarchy of point types using inheritance (Fig. 5). All 
points are by definition network points and many of them overlap or intersect. Even 
with just seven point types there are already five levels of hierarchy. For simplicity, 
Fig. 5 does not show the overlapping point types. Clearly, such a representation is 
inflexible because inserting a new type of point in the network affects the entire net-
work structure. Maintaining evolving points becomes a difficult task. 

It was the complexity of this design problem that made the authors [9] turn away 
from the class concept and the class modeling paradigm. In search for a new modeling 
paradigm and a new concept, they decided to use the concept of role.  
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With role modeling, a physical point is detached from its roles in the network. 
When a point is used in an application, it will be attached to a role specific to that 
application. Fig. 6 shows this new point model, where a point role may be general, 
such as being a network point, or specific, such as being a junction point. A particular 
application system will then decide which of the point roles is to be used. Fig. 6 also 
conveys the following meaning: a point can take any of the roles, but not necessarily 
all of them; a point may take an alternative role, e.g., a point may be a parking point, 
which is either a garage or a reserve point. The parking point role is a general role that 
can be specialized into either a garage or a reserve point. In contrast to the class-based 
model (Fig. 5), the new point model is flexible because inserting a new point role in a 
network will not affect the entire network structure.  Maintaining evolving points 
becomes easier. A detailed description and analysis of the point model can be found 
in [9, 42].  

4   A Simple Role Modeling Approach 

The proposed role modeling approach is illustrated using an academic travel service 
(ATS) example; the approach consists of the following steps. 

1. Capturing the role collaboration context using a role model. 
2. Describing roles, responsibilities and collaborators using RRC cards. 
3. Representing the ordering of responsibilities and collaborations using Interac-

tion Diagrams. 

4.1   Capturing the Role Collaboration Context 

The role collaboration context is determined by a specific task and the roles involved. 
For the ATS example, the task is about flight booking for academic travel. Typically, 
the task involves the following procedures: 

1. An academic seeks the permission from his/her Head of the Department. 
2. If the permission is granted, the Head of the Department notifies the academic 

and the Departmental Accountant; otherwise the travel aborted. 
3. The academic then makes the flight booking through a Travel Agent. 
4. The Travel Agent makes the booking and sends the invoice to the Departmen-

tal Accountant. 
5. The Departmental Accountant makes the payment to the Travel Agent. 
6. The Travel Agent issues the tickets and sends them to the academic. 
7. The academic receives the tickets and is ready for travel. 

There are four roles involved in the above task, which are:  

R1: Traveler is the role of the academic who makes the request for travel. 
R2: Authorizer is the role of the Head of the Department. 
R3: Accountant is the role of an administrative member in the Department. 
R4: Travel Agent is the role of a staff member in a Travel Agent. 
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Fig. 7. A role model represents the collaboration context for the academic flight booking task. 
Arrows represent interactions between roles; an interaction starts from one role and ends in 
another; numbers show the sequence of interactions. 

Traveler initiates and coordinates the whole task. We use a role model (Fig. 7) to 
capture the above four roles and their interactions. The role model defines the context 
of role collaboration in performing the flight booking task. In Fig. 7, an interaction is 
represented by an arrow, originated from one role and terminated in another. Interac-
tions are numbered to show their ordering. One should note that the role model in  
Fig. 7 might well be replaced by a state diagram, to show the starting, ending and 
sequence of role collaboration. 

4.2   Describing Roles, Responsibilities and Collaborators 

Each role identified in a role model is described in full using a RRC card to include its 
responsibilities and collaborators. The role model guides the description of roles. 
First, according to the role model, the collaborators of a role are identified. Collabora-
tion may not be symmetric. For example, the collaboration between Traveler and 
Authorizer is two-ways whereas the collaboration between Traveler and Accountant 
is one-way. When two roles are in a two-way collaboration, they are mutual collabo-
rators; when two roles are in an one- way collaboration, the collaborator is the role to 
which another role points. Hence, Traveler has Authorizer, Accountant and Travel 
Agent as his/her collaborators whereas Accountant has Traveler and Travel Agent as 
his/her collaborators.  

Having identified all the collaborators for each role, we can then assign the respon-
sibilities to the roles. A responsibility is an action taken by a role. A responsibility 
may or may not result in collaborating with another role. For example, Traveler takes 
the travel request responsibility which will result in collaborating with Authorizer, 
whereas Accountant has the responsibilities of updating the account details which 
need no collaborators. Assigning responsibilities is an iterative process which can be 
directed by “what-if” scenarios as suggested by Beck and Cunningham [3]. Fig. 8 
shows the four RRC cards for the role model in Fig. 7.  

4.3   Representing the Order of Responsibilities and Collaborations 

This final step maps a set of related RRC cards onto an interaction diagram to show 
the ordering of responsibilities and collaboration. Fig. 9 shows the ordering of respon-
sibilities and collaborations of RRC cards in Fig. 8. Arrows in the interaction diagram 
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Fig. 8. RRC cards describing four roles in the academic flight booking task 
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Fig. 9. An interaction diagram showing the ordering of responsibilities and collaborations, 
where solid bars representing the period in which roles are active and dotted lines representing 
the period when roles are inactive 

have the same meaning as those in the role model. An interaction diagram provides a 
holistic view of the roles in a particular role model. It shows both internal and exter-
nal views of a role. The internal view of a role is characterized by its responsibilities 
and the external view is characterized by its collaborations with other roles.  
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Fig. 10. A role-responsibility matrix showing roles fulfilling responsibilities through collaboration 

As an alternative to interaction diagrams, we have developed role-responsibility 
matrices (RRM). A RRM is basically isomorphic to an interactive diagram; one tiny 
difference between the two diagrams (see Fig. 9 and Fig. 10) is that a RRM lines up 
the responsibilities explicitly and aligns them with roles in a pair-wise fashion. Such a 
tiny difference is intended to highlight the importance of responsibilities in collabora-
tion and make them an important dimension in addition to roles. With this intention, 
the story of a RRM is that collaboration takes place when the role carries out a re-
sponsibility. In contrast, an interactive diagram places responsibilities in the back-
ground of roles. 

5   Conclusion 

This article attempts to make a claim that the class concept is static, inflexible and not 
suitable for object design; in contrast the role concept is dynamic, flexible and central 
to object design. Two facts support this claim, as found in literature survey. First, 
most efforts on object design have been made to remedy the problems of classes. 
Second, CRC cards and many other concepts are all concerned with capturing object 
interactions in terms of roles, responsibilities and collaborations.  

With this claim, this article argues that roles are relevant and important to the de-
sign of models for MDA. The article supports this argument with a real world exam-
ple and demonstrates why the class concept and the class modeling paradigm are not 
suitable for the domain modeling and why the role concept and the role modeling 
paradigm can yield a flexible design. 
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This article notes that the role concept has not yet gained a widespread acceptance 
in the orthodox object modeling approaches, such as UML, owing to the lack of a 
proper understanding. In order to provide a better appreciation of roles in object  
design, this article has illustrated the idea of roles through a simple role modeling 
approach.  

In conclusion, this article posits that an object-oriented way of design is to focus on 
object interactions and drive the design from roles, responsibilities and collaborations. 
Modeling objects with roles not only yields a semantically rich model, but also a 
simple, elegant design that is flexible and adaptable. The role modeling paradigm 
holds much promise for MDA model design.  
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Abstract. MDA software development requires the interoperability of a wide 
range of modelling services (operations taking models as inputs and outputs), 
such as model edition, model transformation, and code generation. In particular, 
software development life cycle requires the interoperability of different 
modelling services. In particular, this interoperability concerns how to 
"connect" services (how to send an output model produced by one service as an 
input to another service). Today, the notion of modelling services is not yet well 
defined. Moreover, CASE tools, which implements different services, have 
heterogeneous interfaces. For this reason, the service connection is costly and 
cannot be automated. Currently, there are few works addressing this problem. 
Therefore, we propose an architecture and a prototype enabling the services of 
different tools to be connected. 

1   Introduction 

According to Model Driven Architecture (MDA), models are treated as first-class 
elements in software development [21].  MDA application requires a wide range of 
modelling services such as model edition [15], model storage [15], model 
manipulation [22][14], code generation [9] and model transformation [4][7][8]. We 
can mention also model execution and model validation as some work are now 
ongoing at the OMG (execution semantics defined in UML 2.0 [25], Object 
Constraint Language 2.0 [24]). For precision, we define the term modeling service as 
an operation having models as inputs and outputs. Hence, the users of modeling 
services are software developers that want to apply different modeling services to 
their models in order to, for example, analyze, design and implement software.   

Several CASE tools, implemented by different vendors (or developer groups), offer 
various modelling services. For example, NetBeans Metadata Repository [18], 
ModFact [17], Eclipse Modeling Framework (EMF) [10], and Univers@lis [3] 
propose model storage and model manipulation. Rational Rose [30], Objecteering 
[19], EclipseUML [11], Poseidon [29] and ArgoUML [2] propose UML model 
edition and code generation. ArcStyler [1], MIA [16], and UMT-QVT [32] propose 
model transformation. Although these tools cover a lot of modelling services, some 
services, such as UML model execution [31], OCL constraint verification [13], deep 
model copy [28], are not commonly supported by commercial tools. 
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According to the MDA vision, software development life cycle requires the 
interoperability of tools. In particular, the connection between the services of 
different tools must be enabled. This problem concerns how to send an output model 
produced by one service as an input to another service (which may be offered by a 
different tool). For example, connecting a model storage service to a model 
transformation service will enable the model transformation service to retrieve its 
input or to store its output in the model storage service.  

Connecting modelling services is a difficult problem. We identified two main 
concerns regarding this problem: functional connection and concrete connection. 
Functional connection ensures that the service inputs and outputs have compatible 
types so that the services can exchange data. It particularly concerns the type 
compatibility of models. Concrete connection ensures that modelling service 
connections can be realized at run-time. In particular, the connected services must 
agree in a model representation form and in a mechanism for exchanging models.  

Today service connection cannot be done in an automated way. As a result, users 
must spend a lot of technical efforts to realize the connection. Neither functional 
connection nor concrete connection can be automated. The functional connection (i.e. 
type compatibility checking) is not automated because today tools are only 
documented informally in natural languages (in manuals), so the information about 
input/output types may be insufficiently precise and can not be exploited.  

Moreover, each tool has its own model representations for encoding its services' 
inputs and outputs. A model representation can be either a textual form (e.g. XML 
Metadata Interchange (XML) [27], Human-Usable Textual Notation (HUTN) [20]) or 
an object form (e.g. Java Metadata Interface (JMI) [14], EMF Repository [10]). Also, 
each tool provides different interfaces. Some tools provide graphical user interfaces 
[30][19], some are executed via command lines [17] and others propose APIs for 
calling services [10]. To connect services of different tools, a dedicated conversion is 
required for each pair of tools. This effort is costly and can only be done manually. 
For this reason, concrete connection is not automated. 

Despite the needs for connecting modelling services, there are currently few works 
concerning this problem.  The Eclipse platform has been developed for connecting 
tools. But Eclipse does not take into account the particularity of modelling domain. 
Although the EMF offers the integration of modelling tools into Eclipse, it does not 
address at all the functional connection problem and the way tool connections are 
realized is limited to the use of the EMF's Java API.  

We propose here the Model Bus architecture for addressing the functional connection 
and the concrete connection problems. Model Bus is mainly based on middleware 
technologies such as CORBA and Web Services but it adds new features for dealing 
with modelling aspects. Model Bus enables the automation of modelling service 
connections. We have implemented a prototype of Model Bus on the Eclipse platform 
and we have connected several modelling services proposed by the ModFact tools. 

This paper is organized as follows. Section 2 discusses the difficulties of modelling 
service connection. Section 3 presents Model Bus architecture and explains how 
Model Bus can automate modelling service connection. In section 4, we show how to 
use Model Bus in an example scenario. Section 5 validates our concepts by presenting 
our prototype. Section 6 compares our approach with others. The last section 
concludes our work and presents research perspectives. 
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2   Service Connection Problem 

First of all, let us illustrate the notion of service connection through an example (c.f. 
figure below). In this example, a user (software developer) wants to perform a UML 
to Enterprise Java Bean (EJB) transformation. To do this, he does the following 
scenario: First he will find a UML model in a UML Repository service. This service 
requires a model name as an input and returns a UML model as an output. This output 
is connected to the input of a Transformation service for transforming the UML 
model to an EJB model. The output of the transformation service (i.e. EJB model) 
will be connected to the input of a Code Generation service for generating an EJB 
application (i.e. code). 

 

Fig. 1. A service connection example: A software developer wants to use three modelling 
services (UML Repository, Transformation, Code Generation) provided by three different tools 
conjointly.  

This kind of scenario seems to be common in MDA software development. 
However, we will show you that there are significant difficulties in service connection. 

2.1   Functional Connection: Checking Type Compatibility 

To ensure that the service connection is possible, the type compatibility between an 
output of a service and an input of another service must be checked. The previous 
example requires the following checking: UML Repository's output and 
Transformation's input, Transformation's output and Code Generation's input. 

The type compatibility is a well-known problem; however it has not been addressed 
in the modelling domain. Unlike classical data type, the model type compatibility is not 
a trivial problem because nowadays there is no well-known, precise definition of 
model types. Finding such a definition is also difficult because there are uncountable 
kinds of models (e.g. UML models, SPEM models, CWM models …). We will 
identify that model types have several characteristics. Then we will illustrate why these 
characteristics are important to the model type compatibility problem. 

Model type characteristics and example of type checking rules 
Metaclasses: It is a common practice to use a metamodel to define model types - 
input and output types of a service. In other words, the service's inputs or outputs can 
be anything conforming to a metamodel. However, currently there is no precise 
definition of metamodels: Is it a set of metaclasses (MOF classes) or a set of 
metapackage (MOF packages)? We propose that model types should be defined in  
terms of metaclasses rather than metapackages. This is because most services are 
 

Transformation

UML modelPackage Name 

UML Repository Code Generation 

EJB Model 
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Fig. 2. Roles of metaclasses in the model type definition: The gay rectangles represent the 
metaclasses whose instances are inputs and outputs of a modelling service. 

capable of processing instances of some metaclasses. A metapackage may contain 
metaclasses whose instances are not acceptable by services. The figure below shows 
how model types are defined. The grey rectangles in metapackage1 represent the 
metaclasses whose instances can be processed by the service and the metaclass in 
metapackage2 whose instances are produced by the service. 

“Any” vs. specific model types: A model type is said to be specific if the 
corresponding models can contain only instances of some specific metaclasses. On 
the contrary, for the “any” model type, the corresponding models can contain 
instances of any metaclasses. The "any" model type is necessary because there are 
several services that operate on this type. For instance, the MOF QVT proposal [23] 
defines generic transformation that can be applied to any kinds of models. The input 
and output of this transformation is "any" model type.  

Model granularity: A model can contain either a single instance of a metaclass (e.g. 
a UML package, a UML class) or a collection of instances (UML packages, UML 
classes). Therefore, the model type definition must specify the allowed number of 
instances, for example, "a single instance", "no more than two instances", or "any 
number of instances". Moreover, for collection-granularity model types, the order of 
instances in the collection may have meanings. Therefore, the type definition should 
specify whether the instances are required to be ordered. 

The characteristics presented above are required for checking the type 
compatibility. We present some checking rules that use those characteristics. Then we 
will show that those rules cannot be verified in the UML-to-EJB example. 

Metaclasses: An output model type (T1) is compatible to an input model type (T2) if 
all the T1's metaclasses are included in the set of T2's metaclasses.  
As regards the example, UML Repository does not specify the return type. It may 
return either a UML package (instance of metaclass Package) or classes contained in 
the package (instances of metaclass Class), or other things (UseCase, Sequence 
Diagramme etc). Consequently, we cannot check whether its return type is compatible 
to Transformation's input.  

“Any” vs. specific model types: All specific model outputs are compatible to an 
"any" model input. On the other hand, an "any" model output does not always 
compatible to a specific model input depending on the actual type (at runtime) of that 
"any" model output. Therefore, the metaclass checking is necessary at runtime.  

As regards the example, it is not specified whether Transformation service is 
generic or specific to particular kinds of models. As consequent, we cannot know 
whether the type checking must be performed statically or at runtime. 

  metapackage1 metapackage2     service1

outputinput
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Model granularity: The instance number range of the output model type must be 
included in the range of input model type. For example, "only single instance" is 
included in "from zero to two instances".  

As regards the example, Transformation service does not specify how many 
instances (of metaclasses) the result model will contain. If the result model contained 
multiple instances while Code Generation service can handle only one instance, the 
service connection would cause errors. 

We conclude that the type compatibility verification requires precise service 
description, especially the input/output types of services. Moreover, if this description 
were specified in a well-defined format, the automation of the checking rules would 
be feasible. However, this is not the case in current practice because such description 
is usually written in natural languages (i.e. in tool manuals). For this reason, the 
functional connection is an unsolved problem. 

2.2   Concrete Connection: Executing Connected Services 

As previously explained, to execute connected services, the services must agree in a 
model representation form and in a mechanism for exchanging models. However, 
tools providing services are heterogeneous. Therefore, two tools can hardly exchange 
models. We identify two kinds of tool heterogeneity: model representation forms and 
interface styles (i.e. the way services receive inputs and return outputs).  

Model representation forms: Tools have their own model representation forms. On 
one hand, some tools use models represented in textual formats. For example, 
Poseidon and ArgoUML store models in the XMI format. On the other hand, some 
other tools require models in object forms. For example, model edition services in 
EclipseUML operate on model objects in the EMF repository.  

Interface styles: The way services receive inputs and return outputs vary from a tool 
to another. For example, Rational Rose offers to users a graphical user interface (GUI) 
for applying code generation services on a UML model. ModFact provides a command 
line interface for applying a DTD generation on a MOF model. EMF provides an API 
for using the model manipulation service on an EMF repository. Moreover, tools that 
support multi-users can provide remote access. For instance, ModFact repository 
allows the model manipulation service to be accessible through the CORBA RPC. We 
can also anticipate tools offering Web Service access to their services. 

Both kinds of heterogeneity cause difficulties in concrete connection. If services 
use different model representation forms, an output of a service can not be understood 
by one another. Furthermore, some interface styles, such as command lines or GUIs, 
do not support automatic interaction. To connect the services offering such interfaces, 
users must manually transfer a model from one service to another. In this case, 
automating service connection is not possible.  

Although this heterogeneity problem is a well-known problem and several 
solutions have already been proposed (e.g. CORBA, Web Service), none those 
solutions addresses the particularity of modelling domain. They do not define model 
representation forms and interface styles that are appropriate to modelling services.  
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3   Model Bus 

3.1   Describing Functional Connection 

Our design principle is to provide well-formed service description. In particular, 
service inputs and outputs must be precisely defined in order that the service 
connection can be checked. The next figure contrasts the current practice and our 
solution. In the current practice, as we have mentioned that today there is no well-
known, precise definition of model types, the view of modelling services is unclear. 
Our approach proposes a uniform view where services are similar to software 
components having precise input and output definitions. 

We propose a metamodel, called Functional Description (c.f. the next figure). This 
metamodel describes the signatures of modelling services in an abstract way. Modelling 
services are similar to classical operations that have input and output parameters. 
However they have a new important feature: their input and output types can be models. 

 

Fig. 3. Modelling services viewed as software components: Our goal is to provide a precise 
definition of modelling services. This definition must enable users to identify compatible 
services that can be connected. 

DirectionKind
in
out

<<enumeration>>MultiplicityType
upper : Integer
lower : Integer
is_ordered : Boolean
is_unique : Boolean

PrimitiveType EnumerationType
labels : String

Type
name : String

Parameter
direction : DirectionKind
multiplicity : MultiplicityType
name : String 1* 1*

Error
name : String

Service
name : String

1..*1..*

*
+errors

*

raisesErrors

AnyModelType

ModelType

Class
(from Model)

SpecificModelType

1..*

+mofClasses

1..*

 
Fig. 4. Functional Description metamodel: We can describe each modelling service by creating 
an instance of this metamodel. 

The Functional Description metamodel addresses the problem of the type 
compatibility verification by allowing services to be sufficiently described. The model 
characteristics presented in 2.1 can be precisely specified as follows.  

Using Model Bus Current practice 
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Metaclasses: The metaclass SpecificModelType references MOF metaclasses whose 
instances can be contained in input and output parameters. For example, in the 
description of a service requiring a UML use case, the SpecificModelType will point 
to the metaclass UseCase in the UML metamodel. This approach is unambiguous 
since SpecificModelType allows users to obtain, for example, the complete definition 
of UML use cases (in a particular version of the UML metamodel).  

"Any" vs. specific model types: The “any” and specific model types can be 
distinguished using metaclasses SpecificModelType and AnyModelType. 
SpecificModelType points to the metaclasses whose instances are expected while 
AnyModelType indicates that the parameter can contain instances of any metaclasses 
of any metamodels.  

Model granularity: MultiplicityType allows model granularity to be specified using 
the upper and lower attributes. For example, [2..2] (i.e. lower=2, upper=2) and [1..*] 
(i.e. lower=1, upper= -1) denote that the model must contain respectively “exactly 
two” and “one or more” instances. Moreover, the isOrdered attribute specifies 
whether the order of instances (in a multi-instance model) must be respected.  

The Functional Description is similar to the operation definition in MOF 1.4 [22]. 
However, it introduces two new features. Firstly, in MOF operations, a parameter 
type is limited to be a single metaclass. Therefore we cannot define, for example, a 
model including both UML classes and UML packages. In the Functional 
Description, SpecificModelType can define more flexible types because it can 
reference more than one metaclass. Secondly, in MOF operations, the "any" model 
type parameter doesn’t exist. Thus, the Functional Description can describe a wider 
range of services. 

Our approach supports type checking automation. A service description repository 
can be built from our metamodel, based on technologies such as Java Metadata 
Interface (JMI) [14] or Eclipse Modelling Framework (EMF) [10]. This repository 
offers an API for manipulating service descriptions. This API allow us to write type 
compatibility checking rules in Java.  

3.2   Describing Concrete Connection 

In section 2.2, we have already explained that the tools heterogeneity causes difficulty 
for users. However, it is not practical in the real world to limit all tools to only one 
model representation form and one interface style. Moreover, each model representation 
form and interface style has its own advantages. For instance, object forms (e.g. JMI, 
EMF) provide model manipulation facilities while XMI format is better for model 
exchange. As for interface styles, it is simple and convenient to call local tools' services 
via an API while remote access mechanisms such as CORBA or Web Service are 
suitable for multi-user tools. This trade-off leads us to the following design principles:  

EntryPoints: We provide a set of EntryPoints – concrete methods to call modelling 
services - allowing tool implementers to choose an EntryPoint suitable for their tools. 
EntryPoint definition will include model representation definition and interface style 
definition. 
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Fig. 5. How Model Bus enables concrete connection: Our goal is to generate code allowing 
services to be invoked. Thanks to this automated generation, the user does not need to be aware 
of tool heterogeneity.  

Generation rules: For each EntryPoint, we also provide rules for generating 1) 
skeleton codes allowing services to be invoked and 2) service invocation codes for 
connecting an output of a service to an input of another service. Thanks to this 
automated generation, users who want to connect services do not need to be ware of 
service implementation. 

The figure below illustrates how Model Bus solves the concrete connection 
problem. Without Model Bus, when a new tool is added, users will need to develop a 
dedicated method for connecting it with each existing tool. By using Model Bus, a 
new tool can automatically connect to others through the EntryPoints: the codes for 
connecting services will be generated using our generation rules.  

EntryPoints: We propose a metamodel (c.f. next figure), for describing EntryPoints. 
The EntryPoint metaclass associates the concrete aspect with the abstract aspect of 
services. In other words, it specifies how the services defined abstractly in the 
Functional Description can be concretely invoked.  

EntryPoint is specialized for representing each EntryPoint. We identify here three 
EntryPoints: WsEntryPoint, CorbaEntryPoint, JmiEntryPoint. Each EntryPoint is 
briefly defined in the table below according to model representation forms and 
interface styles. 

Table 1. EntryPoint summary 

EntryPoint Model Representation Form Interface style 
WsEntryPoint XMI WSDL 

(Using SOAP message 
for invocation) 

CorbaEntryPoint CORBA objects (based on MOF-IDL) CORBA 
(Using IIOP protocol for 
invocation) 

JmiEntryPoint Java objects (based on JMI) Local Java API 
(Using Java method 
invocation) 

 

Using Model Bus: Automated service connection  
Current practice: 
Manual service connection 

New tool 

New tool
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Fig. 6. EntryPoint metamodel: This metamodel describes how modelling services can be 
concretely invoked 

All EntryPoints follows the similar principles: specifying the representation of 
service parameters (which are models) and specifying the service invocation 
mechanism via a specific interface style. In the rest of the article, we focus on the 
JmiEntryPoint. Our work concerning the WsEntryPoint is presented in [6]. 

Generation rules: For automating service access, we provide the generation rules 
which are used by both tool providers and users. First, they enable tool providers to 
generate skeleton codes allowing the services to be invoked. These skeleton codes 
will be used either for implementing the services or for delegating to existing 
implementation. Then, users can generate codes for invoking the services.  
For JmiEntryPoint, a service description will be mapped to a Java interface. This 
interface will serve for both tool providers and users: It allows tool providers to 
provide the service implementation conforming to JmiEntryPoint. For users, it will be 
used in the generated codes that connect services (as we will later demonstrate in 4.2). 

The rules for generating this Java interface are defined in terms of the 
correspondences between service description metaclasses and Java constructs as 
briefly shown the following table. 

Table 2. Correspondences between service description elements and Java constructs 

Service description elements Java constructs 
JmiEntryPoint A singleton Java Interface <JmiEntryPoint.implClass> 
Service A Java method : 

Java.util.Map <Service.name>(java.util.Map inputMap) 
Input A map entry (<Parameter.name>, value) in inputMap Parameter 
Output A map entry (<Parameter.name>, value) in returned Map  
lower>=1 Corresponding map entry is required 
lower=0 Corresponding map entry is optional 

Multiplicity 
Type 

upper>1 or upper=* Value must be instance of java.util.Collection 
PrimitiveType Basic Java types (e.g. java.lang.String, java.lang.Boolean) 
EnumerationType javax.jmi.reflect.RefEnum 

Type 

ModelType javax.jmi.reflect.RefObject 
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A JmiEntryPoint is mapped to a Java interface. Each service referred by the 
JmiEntryPoint will be mapped to a Java method “java.util.Map <Service.name> 
(java.util.Map inputMap)”. inputMap allows the service’s input parameters to be 
passed as name-value pairs in the map data structure (java.util.Map). Likewise, the 
returned map will contain the name-value pairs of all output parameters.  

The rest of the metaclasses (Parameter, Multiplicity, Type) serve as constraints on 
parameter values: PrimitiveType is mapped directly to Basic Java types (e.g. java. 
lang.String, java.lang.Boolean). For ModelType, the parameter values must be 
objects representing metaclass instances in JMI repositories (i.e. java.jmi.reflect. 
RefObject). For the optional parameter (i.e. MultiplicityType.lower>0), the map entry 
representing the parameter’s value can be absent. For the parameter containing 
multiple objects (i.e. MultiplicityType.upper>1), the class java.util.Collection is used 
for holding the objects. 

4   Model Bus Example 

We take the same example UML-to-EJB for illustrating how Model Bus can solve the 
service connection difficulties. 

4.1   Solving Functional Connection 

For solving functional connection problem, we define each tool (UmlRepository, 
UmlToEjb, CodeGeneration) using the Functional Description metamodel. The result 
is shown in the following table. 

The first tool, UmlRepository, offers two services: findClass and findPackage. The 
former returns a UML class from a given name while the latter returns a UML 
package. The second tool, UmlToEjb, offers the transform service that transforms 
UML packages (instances of metaclass Model_Management::Package in the UML 
 

Table 3. Example of Functional Descriptions 

Tool Service Parameter Direction 
/Multipicity

Type 

className In [1..1] PrimitiveType (String) findClass 
class Out [1..1] SpecificModelType 

(Foundation::Core::Class) 
packageName In [1..1] PrimitiveType (String) 

Uml 
Repository 

findPackage 
package Out [1..1] SpecificModelType 

(Model_Management::Package) 
sourceModel In [1..*] SpecificModelType 

(Model_Management::Package) 
UmlToEjb transform 

targetModel Out [1..*] SpecificModelType 
(ejb::EjbComponent) 

generateSingle 
Component 

ebjComponent In [1..1] SpecificModelType 
(ejb::EjbComponent) 

Code 
Generation 

 
 

generate 
Components 

ebjComponents In [1..*] SpecificModelType 
(ejb::EjbComponent) 
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metamodel) into instances of EbjComponent (defined in the EJB metamodel). The last 
tool, CodeGeneration, offers two services: generateSingleComponent and 
generateComponents. The former requires a single EbjComponent instance while the 
latter requires a collection of EbjComponent instances.  

For connecting the services, users must choose one service for each tool. Since the 
UmlRepository tool and CodeGeneration tool propose more than one service, 
appropriate choices must be made. The next figure shows the choices that the user 
makes (i.e. findPackage, transform, generateComponents).  

To verify that the choices are correct, the user can use the following rules to check 
automatically the type compatibility of the inputs and outputs of the connected 
services. 

 

Fig. 7. Example of modelling service connections: When the modelling services are precisely 
described, we can identify whether the inputs and outputs of them are compatible and can be 
connected. 

The findPackage & transform services: The output parameter package is connected 
to the input parameter sourceModel. The model types of both parameters correspond 
to the same metaclass (Model_Management ::Package) and hence are compatible. 
Their granularities are also compatible ([1..1]  [1..*]). Therefore, the service 
connection is correct. 

The transform & generateComponents services: The output parameter targetModel 
is connected to the input parameter ebjComponents. The model types of both 
parameters correspond to the same metaclass (ejb::EbjComponent). Their 
granularities are also compatible ([1..*]  [1..*]). Therefore, the service connection is 
correct. 

If the user made bad choices, the similar analysis as above could detect bad service 
connections. For example, the connection of the findClass service to the transform 
service would be incorrect because the model types of their parameters are 
incompatible (metaclass  Foundation::Core::Class vs metaclass Model_Management 
::Package). The connection of the transform service to the generateSingleComponent 
service would also be incorrect because the granularities of their parameters are 
incompatible ([1..*]  [1..1]).   

4.2   Solving Concrete Connection 

As described, EntryPoint is used for specifying how to invoke services. We will 
illustrate how to connect services via JmiEntryPoint. By using the generation rules, 
Java interfaces can be generated from the service descriptions as shown below: 

packageName   package  sourceModel  targetModel  ebjComponents 

generateComponents 
(in CodeGeneration) 

findPackage 
(in UmlRepository) transform 

(in UmlToEjb) 



28 X. Blanc, M.-P. Gervais, and P. Sriplakich 

 

public interface UmlRepository { 
  public Map findPackage(Map inputMap); 
  public Map findClass(Map inputMap);   }    
public interface UmlToEjb { 
  public Map transform(Map inputMap);   } 
public interface CodeGeneration { 
  public Map generateSingleComponent(Map inputMap); 
  public Map generateComponents(Map inputMap); } 

 
To execute all the service connections, only a simple code is needed for connecting 

them. For brevity, only the connection of transform service and generateComponents 
service is shown below. The two services are connected by linking the targetModel 
output to the ebjComponents input. To connect them, first the service producing the 
output (i.e. transform) is invoked (line a). Then, the output is extracted from the map 
data structure (line b). Next the output is linked to the input by putting it in the map 
(line d). Finally, the service consuming the input (i.e. generateComponents) is 
invoked (line e). 

 
a. Map transformOutput = UmlToEjb.transform(transformInput);  
b. Collection targetModel = (Collection) 

transformOutput.get(“targetModel”); 
c. Map generateComponentsInput = new Hashtable(); 
d. generateComponentsInput.put(“ebjComponents”, targetModel);  
e. Map generateComponentsOutput = 

CodeGeneration.generateComponents(CodeGenerationInput);  

The codes for linking other parameter pairs follow the same pattern. For this 
reason, by specifying a parameter pair to be linked, we can automatically generate the 
code.  

5   Proof of Concepts: Model Bus Integrated Environment (MBIE) 

We have implemented a Model Bus prototype on the Eclipse platform. This prototype 
is called Model Bus Integrated Environment (MBIE). MBIE provides two facilities. 
Firstly, it allows users to browse all service descriptions. In particular, users can 
examine the signature of each modelling service. Secondly, MBIE automatically 
generates a GUI from service descriptions. Users can then use this GUI for invoking 
any service. This implementation proves that 1) service descriptions can be 
automatically processed and 2) The invocation of any service can be automated in the 
sense that users need not writing codes.  
The following figure illustrates the MBIE architecture. MBIE is connected to the bus 
like other tools. Instead of accessing the bus directly, users can alternatively use the 
GUI facilities provided by MBIE to interact with tools. MBIE contains two 
components: Functional Management and EntryPoint Management. The Functional 
Management allows users to browse service descriptions. The EntryPoint Management 
allows users to invoke the chosen service via an automatically generated GUI. 

Functional Management provides a GUI, called Functional View (c.f. the next 
figure), which lets users explore tools’ Functional Descriptions (i.e. modelling service 
signatures) and then select a service to be invoked.  
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Fig. 8. MBIE Architecture: MBIE is an environment that allows users to use modelling services 
of any tools. It has two parts. Functional Management allows users to examine available 
services and to determine functional connection. EntryPoint Management allows users to 
invoke services transparently form service implementation.    

 

Fig. 9. GUI of MBIE: Functional Management (left) and EntryPoint Management (right) 

As shown in the figure 9, three tools are available: BimLookup, which provides 
lookup services for service descriptions, ModelSharing, which offers a model storage 
service, and ModelTransformation, which proposes a transformation service based on 
Transformation Rule Language [8]. This Functional View also shows that the 
ModelTransformation tool offers the transform service having four parameters (rules, 
sourceModel, targetMetamodel and targetModel). 

EntryPoint Management allows users to invoke a modelling service through the 
Service Call Dialog, which is automatically generated from the signature of the 
service. Firstly, this GUI takes inputs from users. Then the service is invoked using 
the appropriate EntryPoint. Finally, the results are returned to users.  

Figure 9 shows a Service Call Dialog for invoking the transform service. This 
dialog allows users to supply three inputs parameters (rules, sourceModel, and 
targetMetamodel) and to receive the result (targetModel). 

BimLookup  
(tool lookup service) 

ModelTransformation 
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ModelSharing 

EntryPoint  
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6   Related Works 

The works related to Model Bus concern frameworks where tools can be integrated. 
Our previous work, Integrated Transformation Environment (ITE) [5], allows users to 
use many transformation engines in the same environment. Compared to Model Bus, 
the ITE approach is more restrictive. Firstly, ITE limits integrated tools to be model 
transformation tools having one input model and one output model. Model Bus can 
describe more flexible functionalities (i.e. any number of inputs and outputs). 
Secondly, ITE uses metamodels for defining model types. Model Bus proposes a 
more precise definition of model types using metaclasses. 

The providers of some repository implementations such as Netbeans Metadata 
Repository [18], Eclipse Modeling Framework [10], and Univers@lis [3] propose 
frameworks where all tools share the same central repository. This approach allows 
tools to be tightly integrated: all models are stored in the same repository and hence 
can be shared among all tools. For example, model visualization, transformation and 
code generation tools are integrated in the same Univers@lis repository. However this 
approach has two disadvantages. Firstly, it does not address how functional 
connection can be checked. On the other hand, Model Bus offers a metamodel for 
describing modelling service signatures and also rules for checking the model type 
compatibility. Secondly, the central repository approach is not suitable for distributed 
environments: the remote access to the central repository is costly and can expose 
security risks. To overcome this problem, Model Bus includes the Web Service 
EntryPoint for supporting distributed tools.   

Middleware architectures such as Web Service [33] and CORBA are similar to 
Model Bus in the sense that they allow services (or services) to be described (e.g. 
CORBA - IDL, Web Service - WSDL) and they define interfaces for invoking 
services (CORBA - IIOP, Web Service - SOAP Bindings). However, those 
architectures do not support services that have models as inputs and outputs. Model 
Bus is dedicated to the modeling domain. It defines model types and model 
representation forms to be used in modelling services.  

The workflow process definition language (WPDL) [33] allows process 
connections to be specified. Some work for applying WPDL for connecting modeling 
tools [12] has been made. However this work did not address the functional and 
concrete connection problems. For this moment, Model Bus does not have a 
metamodel for expressing how services are connected. We think that a subset of 
WPDL can be reused for expressing service connection in Model Bus. 

7   Conclusion and Perspectives 

Model Bus allows modelling services to be connected. To connect services, the 
functional connection and the concrete connection problems must be solved. To solve 
the functional connection problem, we proposed the Functional Description 
metamodel for describing modelling service signatures. In particular a precise model 
type definition was described. As a result, type compatibility of the connected 
parameters can be automatically checked. To solve the concrete connection problem, 
we defined a set of EntryPoints allowing services to be invoked. We have shown how 
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the service descriptions can be used to automatically generate a Java interface for tool 
providers to implement the services and for users to invoke the services. We have also 
demonstrated how to generate codes for automating service connections. 

The Model Bus prototype is implemented in Eclipse Platform. It offers users the 
high-level facilities for browsing services and invoking any services. This prototype 
proves that modelling service description can be described and Model Bus automates 
the service invocation.   

For future work, we plan to advance this research particularly in two aspects. At 
this time, modelling services are described in terms of model element types and 
model granularities. However, some services require model types to be more specific, 
for example, a service that requires a UML class having at least one attribute, a 
service that requires a UML class with stereotype ‹‹Table››. Therefore, we plan to 
augment model type semantics with Object Constraint Language (OCL). We think 
that this improvement will ensure better the correctness of service connections. 

For the second aspect, we want to propose a method for rigorously expressing how 
services are connected. For example, "output A of service S1 is connected to input B 
of service S2". In particular, we need a metamodel for describing the structure of this 
information. This metamodel will allow us to specify software development scenarios 
involving many modelling services. We also look forwards to automating the 
execution of those scenarios. 
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Abstract. As part of the AMMA project (ATLAS Model Management Architec-
ture), we are currently building several model management tools to support the 
tasks of modeling in the large and of modeling in the small. The basic idea is to 
define an experimental framework based on the principle of models as first class 
entities. This allows us to investigate issues of conceptual and practical interest 
in the field of model management applied to data-intensive applications. By 
modeling in the small, we mean dealing with model and metamodel elements 
and the relations between them. In this sense, ATL (ATLAS Transformation 
Language) allows expressing automatic model transformations. We also moti-
vate the need for the "ModelWeaver" which handles fine-grained relationships 
between elements of different metamodels with a different purpose than auto-
matic model transformation. By modeling in the large, we mean globally dealing 
with models, metamodels and their properties and relations. We use the notion of 
a "MegaModel" to describe a registry for models and metamodels. This paper 
proposes a lightweight architectural style for a model-engineering platform as 
well as a first prototype implementation demonstrating its feasibility. 

1   Introduction 

Following the seminal work of Deremer and Kron in 1976 [9], we believe that the 
situation in the modeling area today is quite similar to the situation described at that 
time in the programming area. Starting from this similarity, we distinguish in this 
paper the two related activities of "modeling in the large" and "modeling in the small" 
which we illustrate with specific examples. The term “Megamodel” has been chosen 
to convey the idea of modeling in the large, establishing and using global relation-
ships and metadata on the basic macroscopic entities (mainly models and metamod-
els), ignoring the internal details of these global entities. There is probably not going 
to be a unique monolithic modeling language (like UML 2.0) but instead an important 
number of small domain specific languages (DSLs) [6], [10] and this will only be 
possible if these small DSLs are well coordinated. To avoid the risk of fragmentation 
[19], we need to offer a global vision, which can be provided by the activity of model-
ing in the large. On the contrary, there will always be an important need to precisely 
define associations between model or metamodel elements, i.e. looking inside the 
                                                           
* This work is performed in the context of the "ModelWare" IST European project 511731. 
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global entities. This activity of modeling in the small will be illustrated here by the 
two related but different examples of model transformation and model weaving. 

This paper is organized as follows. Section 2 recalls the main characteristics of the 
MDE approach (Model Driven Engineering) and illustrates them within the particular 
example of the AMMA (Atlas Model Management Architecture) project. Section 3 
presents model transformation operations with a focus on ATL (Atlas Transformation 
Language). Section 4 describes model weaving operations and their implications in 
the context of the ATLAS Model Weaver (AMW), another important tool in the 
AMMA platform. In particular, we discuss the conceptual differences between model 
transformation and model weaving. Section 5 describes global model management 
facilities and shows their practical impact with the help of the ATLAS MegaModel 
Management tool (AM3) that is intended to support modeling in the large activities in 
the AMMA platform.  

2   AMMA: The Atlas Model Management Architecture 

AMMA consists of two main sets of tools, one set of tools for modeling in the small 
(model transformation and model weaving) and another set of tools for modeling in 
the large based on what we call megamodels [5]. 

2.1   Models 

A model is an artifact that conforms to a metamodel and represents a given aspect of a 
system. These relations of conformance and representation are central to model engi-
neering [3]. A model is composed of model elements and conforms to a metamodel. 
This means that the metamodel describes the various kinds of contained model ele-
ments and the way they are arranged, related and constrained. A language intended to 
define metamodels is called a metametamodel.  

In November 2000, the OMG proposed a new approach to interoperability named 
MDA™ (Model Driven Architecture) [20]. In MDA, the metametamodel is MOF [15] 
(Meta Object Facility) and the transformation language is based on the QVT 1.0 
(Query View Transformation) specification [16]. MDA is one example of a much 
broader approach known as Model Driven Engineering (MDE), encompassing many 
popular research trends such as generative programming [8], domain specific lan-
guages, model integrated computing, model driven software development, model 
management and much more. 

A basic principle in MDE is to regard models as first class entities. Besides the ad-
vantage of conceptual simplicity, it also leads to clear architecture, efficient imple-
mentation, high scalability and good flexibility. As part of several projects, open 
source platforms are being built with the intention to provide high interoperability not 
only between recent model based tools, but also between legacy tools. 

There are other representation systems that may also offer, outside the strict MDA 
or even MDE boundaries, similar model engineering facilities. We call them technical 
spaces [13]. They are often based on a three-level organization similar to the 
metametamodel, metamodel and model of the MDA. One example is grammarware 
[12] with EBNF, grammars and programs, but we could also consider XML docu-
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ments, Semantic Web, database systems, ontology engineering, etc. A Java program 
may be viewed as a model conforming to the Java grammar. As a consequence, we 
may consider, in the OMG scope, strict (OMG)-models (i.e. MOF-based like a UML 
model); but we may also consider outside of this scope more general models such as a 
Java source file, an XML document, a relational database schema, etc. A strict OMG-
model may be externalized as an XMI document and conforms to MOF-conforming 
metamodel. In our approach we deal with OMG-models but also with non-OMG 
models, based on other metametamodels. 

2.2   Open Platforms for MDE  

The advantage of using a model-based platform is that it allows many economies of 
scale. For example model and metamodel repositories may handle efficient and uni-
form access to these models, metamodels and their elements in serialized or any other 
mode. Transactional access, versioning and many other facilities may also be offered, 
whatever the kind of considered model: executable or not, product or process, trans-
formation, business or platform, etc. An MDE platform is primarily intended for tool 
integration. Several tools are usually available on such a platform. 

AMMA defines a lightweight architectural style for MDE platforms. It is based on 
the classical view of the software bus, adapted to the basic model engineering princi-
ples, and may support local or distributed implementations. A local platform is con-
ceptually similar to a software factory as described in [10]. Most of the tools available 
in our current implementation of AMMA, that will be described later, are open source 
tools, such as ATL, AWM, ATP and AM3. More than tools, these represent minimal 
functional blocks in the abstract platform architecture.  There is a set of conventions, 
standards and protocols for plugging or unplugging MDE tools from the AMMA 
platform. As an example, XMI is one standard for exchanging models and metamod-
els in serialized formats. Many other conventions will however allow other forms of 
communication between tools operating on a platform.  

The AM3 tool described in Section 5 defines the way metadata on a given platform 
is managed in AMMA (registry on the models, metamodels, tools, services and all 
other global entities accessible at a given time in a given scope). The fact that these 
metadata are externally handled by megamodels allows achieving simplicity of the 
MDE platform. Extending the scope of a local platform to a given distributed envi-
ronment may be performed by operations on the connected megamodels. The use of a 
megamodel allows keeping the architecture of the software bus very simple because 
the complexity is mainly handled externally by these megamodels conforming to 
specific and adapted metamodels. The megamodel will typically describe artifacts 
(models, metamodels, transformations, etc.), tools and services available in a given 
scope. The management of tools and services may borrow ideas from the Web service 
area (WSDL, UDDI, etc.) but we don’t wish to reinvent heavyweight stream-based 
and event-based CORBA-like protocols for handling model-management tool inter-
operability on top of the Web. Instead, in the spirit of model engineering, we prefer 
simple, adaptive and extensible solutions, based on generative approaches and bor-
rowing their power from the handling of metadata outside of the platform itself, in 
these well-defined megamodels. 
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3   ATL: The Atlas Transformation Language 

This section presents the ATLAS model Transformation Language (ATL) and its 
environment: an execution virtual machine and an IDE. ATL provides internal MDE 
transformations, but we may also need facilities for handling external specific  
external formats. This is handled by the way of projectors described at the end of the 
section. 

3.1   Model Transformation Languages 

A model transformation language is used to define how a set of source models is 
visited to create a set of target models. The language defines how the basic operations 
on models can be performed using a specific set of language constructs (declarative 
rules, imperative instruction sequences, etc.). 

More complex transformation scenarios can be expressed using this simple defini-
tion. The set of source models can include a parametric model used to drive the trans-
formation on a specific path: this is the equivalent of the command line options given 
to UNIX tools. Among target models, there can be such models as trace models. In 
the context of model transformation, traceability is the process of collecting informa-
tion on a running transformation for later use. There are different kinds of traceability 
ranging from the simple (and heavy) recording of every action performed to lighter, 
more specialized and abstract traces which only keep links between some source and 
target elements of interest. 

3.2   ATL 

ATL is a model transformation language, which has its abstract syntax defined using 
a metamodel. This means that every ATL transformation is in fact a model, with all 
the properties that are implied by this. For instance, a transformation program can be 
the source or the target of another model transformation. ATL has been designed as 
an answer to the QVT RFP [16] and is consequently in the MDA space. However, we 
have ongoing work on M3 level independence: enabling the possibility to write trans-
formations for any MDE platform. 

ATL is a hybrid of declarative and imperative constructs. While the recommended 
style to write transformations is declarative, imperative concepts are implemented to 
let the transformation writer decide which style is the more appropriate depending on 
the context. The expression language is based on OCL 2.0 (Object Constraint  
Language). 

In declarative ATL, a transformation is composed of rules. Each rule specifies a set 
of model element types (coming from the source metamodels), which are to be 
matched, along with a Boolean expression, used to filter more precisely the set of 
matched elements (e.g. all classes with a name beginning with a “C”). This constitutes 
the source pattern, or left-hand side, of the rule. The target pattern, or right-hand side, 
is composed of a set of model element types (coming from the target metamodels). To 
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each of them is attached a set of bindings which specifies how the properties of the 
target element are to be initialized. These declarative rules are named matched rules. 

Imperative constructs in ATL can be specified in several places. An imperative 
block can be added to any declarative rule to conveniently initialize target elements 
requiring complex handling. Procedures, which are named called rules in contrast 
with the declarative matched rules, can be placed in the transformation and be called 
from any imperative block. Some procedures may bear the flags entrypoint or end-
point to specify that they should be executed either before or after the declarative 
rules are. The content of imperative blocks consists of sequences of instructions 
among: assignment, looping constructs, conditional constructs, etc. Complex algo-
rithms can therefore be implemented imperatively if necessary. 

A hybrid language is interesting because it can be used declaratively whenever 
possible. This means that some parts of a transformation and even full transforma-
tions, depending on their complexity, can be simply expressed. It is however possible 
to revert to a more classical all-purpose imperative language when the declarative 
constructs are not sufficient. However, we may then loose interesting properties that 
come with the use of declarative constructs. This is why it is planned to define several 
classes of ATL transformations, such as: declarative-only, imperative-only, hybrid, 
etc. Specific tools depending on the class of the transformation will use constraints to 
check whether a given model belongs to the class it supports. Thus, a transformation 
reverser that generates the opposite of a given transformation may only accept de-
clarative transformations. 

3.3   The Execution Virtual Machine 

There are several practical solutions to implement ATL. We chose to define a Virtual 
Machine (VM) for different reasons. The main advantage we see in this approach is 
flexibility. As a matter of fact, AMMA is a research project and as such, ATL is con-
stantly evolving to explore new advanced possibilities. A single low-level implemen-
tation makes it possible to work on high-level transformation language concepts while 
being rather independent of the actual tools used. For instance, the execution engine 
was first written to use the Netbeans/MDR model handler but it now can also work on 
Eclipse/EMF [7].The only part that had to be changed is the VM, since the ATL com-
piler and related tools run on top of it. Besides, despite the fact that our implementa-
tion has not been developed with performance in mind, the principal work to do to 
have a faster execution of ATL transformations is to write a new machine with less 
stringent flexibility requirements. It is of course still possible to develop a native code 
(or even Java bytecode to benefit from its portability) compiler later if necessary. 

Among other interesting aspects, the use of a stack-based instruction set makes 
compiling OCL expressions quite simple. Moreover, other languages can also be 
compiled to our virtual machine. We use this to bootstrap several tools including the 
ATL compiler. 

The ATL VM is a stack machine that uses a simple instruction set, which can be 
divided into three subsets. The first one is composed of instructions that perform 
model elements handling: creation, property access and assignment, operation call. 
The second one contains control instructions: goto, if, collection iteration instructions. 
There is also a set of stack handling instructions to push, pop and duplicate operands. 
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The primitive types are implemented by a native (meaning: part of the VM, actu-
ally in Java) library based on the OCL 2.0 standard library. All operations on primi-
tive types are handled through operation calls to this library, e.g. 1+2 is performed as 
1.+(2), the same way it is defined in the OCL specification. 

While the choice of OCL as a navigation language for ATL has initially been 
made, other alternatives may be considered later without impacting the global archi-
tecture. Furthermore, the OCL part of ATL is being reworked to be pluggable. This 
means that it will be possible to reuse it in other languages for diverse purposes. One 
of our first experiments will be with a constraint-based language to express well-
formedness rules on models. It will, for instance, be used to define the different 
classes of ATL transformation. 

3.4   The ATL IDE 

In order to ease the transformation writing process, we developed an Integrated De-
velopment Environment (IDE) for ATL on top of Eclipse [11]: ATL Development 
Tools (ADT) [1]. It provides several tools usually present in such environments. 
There is a syntax-highlighting editor synchronized with an outline presenting a view 
of the abstract syntax of the currently edited transformation program. We also devel-
oped wizards to create ATL projects for which a specific builder compiles ATL trans-
formations. 

A launch configuration is available to launch transformations in run or debug 
mode. In the latter, the execution can be debugged directly in Eclipse. The accompa-
nying documentation tutorial can be used to show usage of all these features. Most of 
the ATL IDE components [1] behave the same way as their Java Development Tools 
(JDT) counterpart in Eclipse. Developers used to any modern IDE should not be lost 
when using ADT, which is illustrated in Figure 1. 

3.5   Projectors 

There are quite a lot of peripheral tools that are also useful to actually perform some 
model transformation work in relation with other technical spaces. We have grouped 
these tools under the name ATP (ATLAS Technical Projectors). Among these tools, 
we have identified a very important subset which we call injectors and extractors 
tools. As a matter of fact, there is a very large amount of pre-existing data that is not 
XMI [17] compliant but that would greatly benefit from model transformation. This 
data needs injection from its technical space (databases, flat files, EBNF, XML, etc.) 
to the MDE technical space. The need for extraction is also quite important: many 
existing tools do not read XMI. A simple example is the Java compiler. What we need 
here is code generation, which may be seen as a specific case of model extraction. 
The ATP goal is to host, in an organization as regular as possible, all drivers for ex-
ternal tool formats. It is an alternative to defining ad-hoc solutions for a lot of bridges 
with MDE-models usually named for example Model2Text, Text2Model, 
Model2EBNF, EBNF2Model, Model2SQL, SQL2Model, Model2XML, 
XML2Model, Mode2Binary, Binary2Model, etc. 
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Fig. 1. A view of ATL Development Tools (ADT) 

Besides, even when dealing with MDE-based tools, it may be convenient to use 
simple textual representations rather than always using a complex ad-hoc tool or 
meta-tool. We designed the Kernel Metametamodel (KM3) to this end. It is a sim-
pletextual concrete syntax to represent metamodels. Although there are quite a lot of 
tools to draw UML diagrams and although some of them actually export valid meta-
models in XMI, we came to the conclusion, after much experimentation, that an addi-
tional simple textual tool for metamodel representation is really useful. 

4   AMW: The Atlas ModelWeaver 

In order to provide a naive description of the ModelWeaver, let us suppose we have 
two metamodels LeftMM and RightMM. We often need to establish links between 
their related elements. There are many occasions when we need such functionality in 
a MDE platform as will be discussed later. Concerning the set of links the following 
issues have to be considered: 

• The set of links cannot be automatically generated because it is often based on 
human decisions or heuristics. 

• It should be possible to record this set of links as a whole, in order to use it 
later in various contexts. 

• It should be possible to use this set of links as an input to automatic or semi-
automatic tools.  

As a consequence, we come to the conclusion that a model weaving operation pro-
duces a precise weaving model WM. Like other models, this should be based on a 
specific weaving metamodel WMM. The produced weaving model relates to the 
source and target metamodels LeftMM and RightMM and thus remains linked to these 
metamodels in a megamodel registry. 
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Each link instance has to be typed conforming to a given WMM. There is no unique 
type of link. Link types should provide weaving tools with useful information. Even if 
some links contain only textual descriptions, these are valuable for tools supporting 
documentation, manual refinements or performing heuristics.  

4.1   Motivating Examples 

In software engineering practices, the "Y organization" sometimes called the 2TUP 
(Two Tracks Unified Process) has often been proposed as a methodological guide. 
The OMG has promoted this idea in the MDA proposal where a Platform Independent 
Model (PIM) should be weaved with a Platform Definition Model (PDM) to produce 
a merged Platform Specific Model (PSM).  

Let us suppose we have a PIM for a bank containing the class BankAccountNumber. 
Suppose we have a PDM for an implementation platform containing classes LongInte-
ger and String. One of the most important events in the software development chain is 
to take design decisions. One such design decision here would be for example to estab-
lish that the BankAccountNumber should be implemented using a String instead of a 
LongInteger. We will not discuss here the validity of this decision. However, we would 
like to ensure that this decision is well recorded, with the corresponding author, date, 
rationale, etc. Furthermore this decision is probably based on previous decisions and 
further decisions will be based on it. 

What we see here is that a metamodel for design decisions would be most useful 
with several properties and links associated to each design decision. We can under-
stand also that it would be very improbable to have an automatic weaving algorithm 
since this is most often a human decision based on practical know-how. Of course the 
user deciding of the weaving actions should be guided and helped by intelligent assis-
tants that may propose her/him several choices. These helpers may be sometimes 
based on design patterns or more complex heuristics. 

Let us take another example inspired by the work of Ph. Bernstein [2], [18]. We 
have two address books to merge and we get both metamodels LeftMM and RightMM. 
In LeftMM we have the class Name and in the second one the classes FirstName and 
LastName. Here we need to establish a more complex link stating that these are re-
lated by an expression of concatenation. 

4.2   Extensible Metamodels 

One may assume that there is no standard metamodel for weaving operations since 
most developers define their own. However, most often a given weaving metamodel 
will be expressed as an extension of another weaving metamodel that allows building 
a general weaving tool.  

The ModelWeaver tool in AMMA reuses part of the infrastructure of the ATL IDE 
based on the Eclipse Platform [1]. We suppose there is a stub weaving metamodel and 
this is extended by specific metamodel extensions. The important goal is not to have 
to build a specific tool for each weaving task or use case. The two notions on which 
we are basing the design are metamodel extensions and Eclipse plugins. 

The main idea of the implementation is that the GUI of the weaving tool is simple 
and may be partially generated. From the left part, one can select any class or associa 
 

-
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Fig. 2. First prototype for Atlas Model Weaver (AMW) 

tion of the left metamodel and from the right part one can similarly select any class or 
association of the right metamodel. In the central part appear all the main elements of 
the weaving metamodel. Selecting a triple thus means creating a weaving link in the 
resulting weaving model. 

Proceeding in this way, we get a generic weaving tool, adaptable to any kind of 
left, right and weaving metamodels. Of course, many design alternatives are being 
explored in the actual building of this tool. An initial prototype has been built and 
may give an idea of the user interface of AMW (see Figure 2). 

As may be inferred from this prototype, a typical weaving session starts by upload-
ing the weaving metamodel. From this metamodel, part of the tool GUI may be auto-
matically generated. Then the left and the right metamodel may be chosen and the 
weaving work may proceed. 

4.3   Weaving Rationale 

One question often asked is why we need model weaving operations in addition to 
model transformations. This question raises at least the following issues: 

• Issue of "arity": Usually a transformation takes one model as input and produces 
another model as output, even if extensions to multiple input and output may be 
considered. In contrast, a model weaving takes basically two models as input plus 
one weaving metamodel.  

• Issue of "automaticity": A transformation is basically an automatic operation 
while a weaving may need the additional help of some heuristics or guidance to 
assist the user in performing the operation. 
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• Issue of "variability": A transformation is usually based on a fixed metamodel 
(the metamodel of the transformation language) while there is no canonical stan-
dard weaving metamodel.  

Although one may argue that there may be several levels of abstraction in trans-
formations (e.g. specifications and implementations of transformations), these three 
mentioned issues allow concluding that transformation and weaving are different 
problems. The first experiments with ATL and AMW confirmed this conclusion. In 
some particular cases however, a weaving model may be itself transformed into a 
transformation model.  

Many research efforts like [22] are presently starting to investigate the relations be-
tween aspect-oriented programming and model engineering. This will be an important 
source of inspiration for weaving metamodels in the future. 

One important open research issue that will be addressed later is how to integrate 
user guidance and domain dependent heuristics [11] in a model weaver. At this point 
of the research we have yet no hint on how to integrate this kind of knowledge as 
independent models. It is likely that those heuristics will have to be coded as Eclipse 
plugins in a first stage. 

5   AM3: The Atlas MegaModel Management Tool  

The Atlas MegaModel Management, AM3, is an environment for modeling in the 
large. With the macroscopic angle, models or metamodels are considered as a whole 
together with tools, services and other global entities. 

Connected to an open platform, tools will exchange models. But tools may also be 
considered as models. A tool implements a number of services or operations. Each 
service or operation is also represented as a model. An operation may have input and 
output parameters, each being considered as a model. The interoperability platform 
may be organized as an intelligent model exchange system according to several prin-
ciples and protocols such as the classical software bus or even more advanced archi-
tectures. To facilitate this exchange, the platform may use open standards such as 
XMI (XML model Interchange), CMI (CORBA Model Interchange), JMI (Java 
Model Interchange), etc. 

Each time a given tool joins or leaves the platform, the associated megamodel is 
updated. There are also plenty of other events that may change the megamodel like 
the creation or suppression of a model or a metamodel, etc. Within one platform (lo-
cal or global), the megamodel records all available resources. For each platform, we 
suppose there is an associated megamodel defining the metadata associated to this 
platform. For the sake of simplicity, we shall suppose that a local platform may be 
connected to another remote platform. This connection may be implemented by ex-
tension operations applied to the related megamodels. 

5.1   Motivating Examples 

To illustrate our purpose, we start by mentioning some situations, which one could 
find useful to get macroscopic information on models. By macroscopic, we mainly 
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mean relations that consider models as wholes and not their elements. Of course this 
is a point-of-view related consideration since we are talking about elements of mega-
models.  

A well-known global example of global link is the conformance relation between a 
model and its metamodel. This is often considered as an implicit link, but we suggest 
that this could also be explicitly captured in a megamodel with many advantages. One 
interesting property of this global conformance relation between a model and its 
metamodel is that it may be viewed as summarizing a set of relations between model 
elements and metamodel elements (a relation we often name the "meta" relation). One 
can clearly see here the coexistence between global model level relations and local 
element based relations. In some cases, one is not interested in the local element level 
relations because the global relation provides sufficient reliable information on what 
is actually needed. 

Another example is related to transformations. Recall that in our MDE landscape, a 
transformation is a model, conforming to a given metamodel. So, if a model Mb has 
been created from a model Ma by using transformation Mt, then we can keep this 
global information in the megamodel. Supposing the transformation model Mt has a 
link to its reverse transformation Mt-1, the memorized information can be used for 
reverse engineering (from a modified model Mb) or for consistency checks. Being 
stored in a repository, a given transformation Mt will have no meaning if the three 
links are not provided to the source and target metamodels and the transformation 
metamodel itself. 

There is a whole set of information that could be regarded as global metadata. For 
example, we could associate to a model the information of who has created it, when, 
why, what for, who has updated it and the history of updates, etc. To a metamodel we 
can associate its goal, the place where we can find its unique original definition,  
alternate definitions, its authors, its history, its previous and next versions, etc. A very 
naive implementation idea, for example, would be to imagine using a CVS for  
different versions of a metamodel. The notion of megamodel goes much beyond this 
kind of facilities, with a very low implementation cost and a much more regular  
organization.  

The idea of model driven architecture has sometimes been presented with mega-
models as described in [4] from where the diagram of Fig. 3 is extracted. What is 
conveyed there is that a PSM is a model, in relation with a given PIM and with a 
given PDM (Platform Description Model). From a PIM, it should be possible to know 
which PSMs are available and to what platform they correspond. In simple cases, the 
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Fig. 3. Extended MDA classification 
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description of the process that produced the PSM from the PIM and the PDM could 
also be explicitly defined. Although somewhat idealized, these illustrations show how 
megamodels may be used beyond mere documentation of architectural and process 
approaches. The megamodel captures the idea of a “MDA component” as originally 
presented in [4], but allows going much beyond this proposal. In its present state it 
also allows to take into account solutions like the RAS OMG specification (Reusable 
Asset Specification). 

5.2   Use Cases for the Megamodel Manager 

Let us consider a use case with two MDE platforms installed in specific organiza-
tions, one in Nantes and one in Oslo, for example. Within each organization, there are 
different tools for capturing (Rational XDE, Poseidon, etc.) and storing/retrieving 
models and metamodels. Some tools may be common. Each platform has been initial-
ized and whenever a tool is plugged or unplugged, the local megamodel is updated. 
Also, each tool has the possibility/responsibility to update the local megamodel upon 
achievement of specific operations. Examples of these operations may be: 

• a user has created a model with a modeling tool such as Poseidon or Rational 
XDE, 

• a user has created a metamodel in KM3 format with a textual editor, 
• a user has modified a metamodel, 
• a user has created a transformation in ATL, 
• a user has created a new model by running an ATL transformation, 
• etc. 

Let us suppose a user in Oslo wishes to generate a list of contacts in a given data-
base from a set of 5000 contacts contained in his/her local Microsoft Outlook system. 
The first action would be to look on the local Oslo platform if there is a metamodel 
for Microsoft Outlook available. If the metamodel is available in Oslo, the user will 
look for a corresponding injector able to act as a driver to transform Outlook into 
MDE formats. If these correspond exactly to his/her needs, then they will be used as 
is. Otherwise they will be adapted. After that, the user will do the same for the target 
database (metamodel and extractor). Finally the local platform will be queried for a 
suitable transformation. If none corresponds, one will be built or adapted with the 
help of suitable browsing/editing tools. In case of local unavailability, platforms that 
have links with the Oslo platform will be queried, for example the Nantes platform. 
The actions will be applied on this new platform. Alternatively, the user may consider 
his/her platform to virtually correspond to all components available on the Oslo or 
Nantes platform by a simple extension operation.  

The problem of modeling in the large is related to several issues like typing [21], 
packaging, tool integration and interoperability, etc. Uniform access to local and re-
mote resources may be facilitated by a megamodel-based approach as presented here. 
A resource may be a model, a metamodel, a transformation, a process, a service, a tool, 
etc. The first implementation of AMMA mainly deals with local platforms, but several 
extensions to distributed environments are already considered. One particular goal is to 
consider that professional modelers will exchange metamodels, transformations, etc. 
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like other exchange music or video. As a consequence, peer-to-peer architectures will 
be studied as an important alternative way to implement the MDE platform.  

   Conclusion 

In this paper, we have presented the main tools that are being progressively integrated 
in the current AMMA prototype. Even if the development status of these tools is dif-
ferent, they share the common principle of models as first class entities and they have 
been designed to collaborate in a complementary way. 

Our work on the design implementation and first use of the AMMA platform has 
led us to consider two kinds of activities in MDE: modeling in the large and modeling 
in the small. The corresponding operations have been illustrated by four tools at dif-
ferent levels of maturity: ATL, AMW, ATP and AM3. Model transformation has been 
recognized as an essential operation in MDE, but a lot of work yet remains to estab-
lish the exact application domain for QVT-like tools. Model weaving is presently in 
search of recognition, but when one considers how active this subject has been in the 
past in knowledge, data, and software engineering, it is very likely that applying 
model engineering principles to this field will bring important results in the future. As 
for megamodel management, it is probably the most recent question raised in the 
MDE field. Here again, there are a lot of examples of successful usages of this global 
approach in related domains and it is very likely that global registries will soon be 
considered essential for dealing with the management of an increasing number of 
global entities. 

What we have tried to achieve with the AMMA platform is a balanced integration 
of these complementary aspects. The idea of considering models as first class entities 
has been the key principle to reach this goal. The AMMA experimental implementa-
tion of an MDE platform has allowed a first level of validation in the separation be-
tween the activities of modeling in the small and modeling in the large. There re-
mains, however, a considerable amount of research effort yet to be done before these 
ideas translate into mainstream engineering platforms.  

Acknowledgements 

We would like to thank F. Allilaire, M. Didonet del Fabro, T. Idrissi, D. Lopes and G. 
Sunye for their contributions to the AMMA project. 

References 

[1] Allilaire, F., Idrissi, T. ADT: Eclipse Development Tools for ATL. EWMDA-2, 
September 2004, Kent, http://www.cs.kent.ac.uk/projects/kmf/mdaworkshop/  

[2] Bernstein, P.A., Levy, A.Y., Pottinger, R. A.: A Vision for Management of Complex 
Systems. MSR-TR-2000-53, Microsoft Research, Redmond, USA ftp://ftp.research. 
microsoft.com/pub/tr/tr-2000-53.pdf  

6



46 J. Bézivin et al. 

 

[3] Bézivin, J.: In search of a Basic Principle for Model Driven Engineering. Novatica/ 
Upgrade, Vol. V, N°2, April 2004, pp. 21-24, http://www.upgrade-cepis.org/issues/ 
2004/2/up5-2Presentation.pdf  

[4] Bézivin, J., Gérard, S., Muller, P.A., Rioux, L.: MDA Components: Challenges and Op-
portunities. Metamodelling for MDA, First International Workshop, York, UK, Novem-
ber 2003, http://www.cs.york.ac.uk/metamodel4mda/onlineProceedingsFinal.pdf  

[5] Bézivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. OOPSLA & GPCE, 
Workshop on best MDSD practices, Vancouver, Canada, 2004  

[6] Booch, G., Brown, A.W., Iyengar, S., Rumbaugh, J., Selic, B.: An MDA Manifesto. 
Business Process Trends/MDA Journal, May 2004. 

[7] Budinsky, F., Steinnberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling 
Framework, EMF, The Eclipse series, ISBN 0-13-142542-0, 2004 

[8] Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools and Applica-
tions. Addison-Wesley, Reading, MA, USA, June 2000   

[9] Deremer, F., Kron, H.: Programming in the Large versus Programming in the Small. 
IEEE Trans. On Software Eng. June 1976, http://portal.acm.org/citation. 
cfm?id=390016.808431 

[10] Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories, Wiley, ISBN 0-471-
20284-3, 2004 

[11] Heuvel, W.J.: Matching and Adaptation: Core Techniques for MDA-(ADM)-driven Inte-
gration of new Business. Applications with Wrapped Legacy Systems. MELS, 2004  

[12] Klint, P., Lämmel, R., Kort, J., Klusener, S., Verhoef, C., Verhoeven, E.J.: Engineering 
of Grammarware. http://www.cs.vu.nl/grammarware/  

[13] Kurtev, I., Bézivin, J., Aksit, M.: Technical Spaces: An Initial Appraisal. CoopIS, 
DOA’2002 Federated Conferences, Industrial track, Irvine, 2002 
http://www.sciences.univ-nantes.fr/lina/atl/publications/  

[14] Lemesle, R.: Transformation Rules Based on Metamodeling. EDOC,'98, La Jolla, 
California, 3-5, pp.113-122, November 1998 

[15] OMG/MOF: Meta Object Facility (MOF) Specification. OMG Document AD/97-08-14, 
September 1997. http://www.omg.org  

[16] OMG/RFP/QVT: MOF 2.0 Query/Views/Transformations RFP. OMG document 
ad/2002-04-10. http://www.omg.org  

[17] OMG/XMI: XML Model Interchange (XMI) OMG Document AD/98-10-05, October 
1998. http://www.omg.org 

[18] Pottinger, R.A., Bernstein, P.A.: Merging models Based on Given Correspondences, 
Proc. 29th VLDB Conference, Berlin, Germany, 2003 

[19] Schmidt, D.: Model driven Middelware for Component-based Distributed Systems. In-
vited talk, EDOC’2004, Monterey, Ca., September 2004 

[20] Soley, R.: OMG staff Model-Driven Architecture. OMG document. November 2000. 
http://www.omg.org  

[21] Willink, E.D. OMELET: Exploiting Meta-Models as Type Systems. EWMDA-2, Can-
terbury, England, September 2004  

[22] Wu, H., Gray, J., Roychoudhury, S., Melnik, M. Weaving a Debugging Aspect into Do-
main-Specific Language Grammars. ACM, 2004 



Model-Driven Development of Reconfigurable
Mechatronic Systems with MECHATRONIC UML�

Sven Burmester��, Holger Giese, and Matthias Tichy

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

{burmi, hg, mtt}@upb.de

Abstract. Today, advanced technical systems are complex, reconfigurable
mechatronic systems where most control and reconfiguration functionality is rea-
lized in software. A number of requirements have to be satisfied in order to ap-
ply the model-driven development approach and the UML for mechatronic sys-
tems: The UML design models must support the specification of the required
hard real-time event processing. The real-time coordination in the UML models
must embed the continuous control behavior in form of feedback-controllers to
allow for the specification of discrete and continuous hybrid systems. Advanced
solutions further require the dynamic exchange of feedback controllers at run-
time (reconfiguration). Thus, a modeling of rather complex interplays between
the information processing and the control is essential. Due to the safety-critical
character of mechatronic systems, the resulting UML models of complex, dis-
tributed systems and their real-time behavior must be verifiable in spite of the
complex structure and the embedded reconfigurable control elements. Finally, an
automatic code synthesis has to map the specification correctly to code. In this pa-
per, we will present our MECHATRONIC UML approach, which fulfills all these
requirements. The approach is motivated and illustrated by means of a running
example.

1 Introduction

An emerging field of software engineering research concerns complex, reconfigurable
mechatronic systems. Mechatronic systems [1] combine technologies from mechani-
cal and electrical engineering as well as from computer science. They are real-time
systems because reactions to the environment usually have to be completed within a
specific, predictable time and they are hybrid systems because they usually consist of
discrete control modes as well as implementations of continuous feedback controllers.
As incorrect software can lead to failures with fatal consequences, they are also safety-
critical systems.
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Mechatronic systems, which had been single, autonomous systems, have been used
in distributed settings, which require extensive coordination, in recent times. Due to
the new requirements stemming from distribution and coordination scenarios, a new
generation of reconfigurable mechatronic systems has emerged. Those reconfigurable
mechatronic systems change their behavior in order to comply with certain roles, which
result from coordination and contracts with other mechatronic systems.

This reconfiguration leads to an increased complexity and thus makes it more diffi-
cult to fulfill safety-critical requirements. To guarantee safety for reconfigurable mecha-
tronic systems, we extend in this paper the Model Driven Architecture (MDA) ap-
proach [2] for the design of hybrid mechatronic real-time systems with reconfiguration.

The today existing UML specification languages for technical systems [3,4,5,6,7,8]
only provide solutions for either modeling, verification, or code generation, but fail to
provide seamless support for all three requirements, which would be necessary for the
model-driven development of reconfigurable mechatronic systems. Therefore, a spec-
ification language (model) is required, that contains at first sufficient information to
specify the real-time behavior of the system in such a manner that high level modeling,
verification, and semantically correct source code generation are possible. Methods for
verification are required that guarantee the correctness of the whole distributed, hard
real-time system. Reconfigurable mechatronic systems are typically too complex to di-
rectly verify the whole system using model checking. Instead, the model must enable
the compositional model checking which considers just the component’s external vis-
ible behavior to verify the real-time coordination. When specifying the details of the
component’s behavior within the model, it must be possible to guarantee that adding
the details does not invalidate the component’s external behavior taken into account
during verification.

In this paper, we present the MECHATRONIC UML approach which allows the
model-driven development of complex, distributed, safety-critical real-time systems
which supports modeling, verification, and code generation by employing earlier in-
ventions namely hybrid mechatronic components [9] and real-time coordination pat-
terns [10]. Two different views need to be distinguished: the structural view and the
behavioral view. The structural view describes the overall system that consists of mul-
tiple component instances, which are possibly distributed, interconnected with each
other, and which are exchanging messages via communication. In the behavioral view,
the behavior of single components is specified. As proposed in the MDA approach,
structure and behavior are specified with platform independent models which are trans-
formed to platform specific code, later. We apply UML diagrams [3] as platform inde-
pendent models. UML state machines are extended by more expressive constructs for
the description of real-time behavior [11,12]. Component diagrams are refined such that
block diagrams [13], which are the most common description technique in the domain
of feedback control engineering, can be smoothly integrated [9].

The required steps during the model-driven development with the MECHA-
TRONIC UML approach can basically be divided into three phases which will be de-
scribed in detail in Section 3 (see Figure 1). In the first two phases a correct platform in-
dependent model (PIM) is specified: In the first phase (steps 1-3), the system structure is
defined which is used to identify where in the system communication is required. Each
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Fig. 1. Seamless support for the design of mechatronic systems

communication is described by an individual real-time coordination pattern. These co-
ordination patterns have different roles, which contain the real-time logic for the coordi-
nation, and a real-time constraint, which is proven w.r.t. certain communication network
properties. If such a coordination pattern has been designed and successfully verified,
it is added to a pattern library for reuse.

In the second phase (steps 4-6), the mechatronic components are built using the pre-
fabricated already verified coordination patterns, stored in the library of patterns. The
real-time behavior of the component is a refinement of the combination of pattern roles
and additional specified behavior. The employed refinement notion ensures the verified
real-time properties. In addition, the component’s internal coordination has to be veri-
fied to exclude inconsistent behavior or deadlocks. In the next step further components
(e.g. hybrid ones) are embedded into the superordinated component. Simple consistency
checks ensure again that the verified real-time properties of the coordination patterns
are still valid in spite of the embedding. Thus, a complete verification of the system is
not necessary, because the verification results of the individual patterns and components
still hold for the complete system. In the last phase, the platform specific model (PSM)
and finally platform specific source code is synthesized in step 7.

In the next section, we present the application scenario, which is used within this pa-
per to exemplify the application of our approach. In Section 3, we present our approach
w.r.t. system structure, real-time behavior, real-time coordination, and the integration
of hybrid behavior. Our approach is then compared with the UML 2.0 specification [3]
in Section 4 and other related work in Section 5. We finally conclude in Section 6 and
present current and future work.

2 Application Example

As concrete example, we present the design of a self-optimizing version of the soft-
ware for the RailCab research project1 which aims at using a passive track system with
self-optimizing shuttles that operate individually and make independent and decentral-
ized operational decisions. The vision of the railcab project is to provide the comfort of

1 http://www-nbp.upb.de/en
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individual traffic concerning scheduling and on-demand availability of transportation
as well as individually equipped cars on the one hand and the cost and resource effec-
tiveness of public transport on the other hand. The modular railway system combines
sophisticated undercarriages with the advantages of new actuation techniques as em-
ployed in the Transrapid2 to increase passenger comfort while still enabling high speed
transportation and (re-)use of the existing railway tracks.

One particular problem is to reduce the energy consumption due to air resistance
by coordinating the autonomously operating shuttles in such a way that they build con-
voys whenever possible. Such convoys are built on-demand and require a small dis-
tance between the different shuttles such that a high reduction of energy consumption
is achieved. Coordination between speed control units of the shuttles becomes a safety-
critical aspect and results in a number of hard real-time constraints, which have to be
addressed when building the control software of the shuttles.

When shuttles approach each other, they use wireless communication to coordinate
the building of the convoy. Dependent on the position within the convoy they have to
change their behavior. For example a rear shuttle will no longer hold the velocity on
a constant level, but the distance to the front shuttle. Therefore, it dynamically has to
exchange the feedback controller which controls its acceleration. Further, a shuttle will
reduce the intensity of braking when another one drives in a short distance behind to
avoid a rear-end collision. Consequently, the shuttle design must ensure on the one hand
that the communication fulfills all safety requirements (e.g. safe coordination when
building or breaking convoys, no deadlocks) and that the exchange of the dynamic
controller (reconfiguration) guarantees safety and stability.

As a running example within this paper we consider a simplified version of the
convoy building problem. Namely we assume that only convoys of two shuttles are
built.

3 Model-Driven Development with MECHATRONIC UML

For the component-based development of mechatronic systems with UML, we extend
the UML by notions for the specification of continuous and real-time behavior. The
real-time extensions for the UML are specially geared towards verification of safety-
critical properties. In the following, we will describe our approach in detail using the
above mentioned example.

3.1 System Structure

UML component diagrams are used for the specification of the structure of our systems.
Component diagrams specify components and their interaction in form of connectors.
We distinguish component types and their instances during runtime. Connectors model
the communication between different components via the ports and interfaces and the
communication properties w.r.t. message loss, latency, etc. Ports are distinct interaction
points between components and are typed by provided and required interfaces.

2 http://www.transrapid.de/en
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Shuttle

:AC

RearRole FrontRole

Fig. 2. Type specification of component Shuttle

For our example scenario, Figure 2 shows the component type for the shuttle. The
Shuttle component contains a hybrid AccelerationControl (AC) component instance.
This component computes the acceleration needed to achieve a specific goal (keep-
ing a specified distance or keeping a specified speed level). The AccelerationControl
component has five incoming continuous ports for the current velocity vcur, the current
distance Δcur, and the velocity of the front shuttle vFront provided by sensors, and the
required velocity vreq and the required distance Δreq which are parameterized refer-
ence inputs. Further, AccelerationControl has one outgoing continuous port that sends
the acceleration values to the appropriate hardware actuator devices. In addition (the
details are presented in Section 3.4), the AC component contains discrete behavior to
switch between keeping distance or keeping velocity on a constant level, and, thus, is a
hybrid component. For clearer presentation, the sensors and actuators connected to the
input ports and the output port of the AC component have been hidden.

3.2 Real-Time Coordination

Interaction between component instances during runtime is a major part in the design
of complex, reconfigurable, mechatronic systems. In our scenario, a shuttle forms a
convoy with another shuttle via the RearRole and FrontRole interfaces. In the domain
of mechatronic systems, an autonomous unit like a shuttle reacts in a local environment
and the interfaces to its environment are strictly defined (as e.g. a shuttle trying to
build a convoy has to interact only with one other shuttle and not with a third one
which is a few kilometers away). This domain-specific restriction is the reason why
usually only relative simple coordination patterns have to be constructed, i.e. patterns
with simple coordination protocols between roles, limited numbers of input signals and
a fixed number of roles.

The interaction between two shuttles w.r.t. building a convoy is one such simple co-
ordination pattern. Figure 3 shows the ConvoyCoordination pattern between two shut-
tles. The protocol for building and breaking convoys is specified in the roles of this
pattern (see Figure 4). Components in the domain of mechatronic systems must meet
real-time requirements. Therefore, we use our real-time variant of UML state machines
called Real-Time Statecharts [11,12] for the specification of role behavior. They al-
low to apply constructs from timed automata [14,15] like clocks, time guards, time
invariants and further annotations like worst case execution times and deadlines (see
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Fig. 3. Component Diagram and Patterns
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Fig. 4. Statechart of the RearRole role and the FrontRole role

Section 3.3). As shown in [11], these annotations enable an automatic implementation
on a real physical machine with limited resources.

If an event has the form interface.message it means that the transition is triggered
when message is received via the interface interface. Side-effects of the form inter-
face.message describe the sending of message to a receiver which is connected via
interface. Later, we will use events where no interface is specified. Then message is
local and sent or received within the same statechart.

Initially, both roles are in state noConvoy::default, which means that they are not
in a convoy. The rear role non-deterministically chooses whether to propose building a
convoy or not. After having chosen to propose a convoy, a message is sent to the other
shuttle resp. its front role. The front role chooses non-deterministically to reject or to
accept the proposal after max. 1000 msec. In the first case, both statecharts revert to
the noConvoy::default state. In the second case, both roles switch to the convoy::default
state.

Eventually, the rear shuttle non-deterministically chooses to propose a break of the
convoy and sends this proposal to the front shuttle. The front shuttle chooses non-
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deterministically to reject or accept that proposal. In the first case, both shuttles remain
in convoy-mode. In the second case, the front shuttle replies by an approval message,
and both roles switch into their respective noConvoy::default states.

For the connector which represents the wireless network we do not apply an explicit
statechart, but instead specify its QoS characteristics such as throughput, maximal delay
etc. in the form of connector attributes. In our example, we assume that the connector
forwards incoming signals with a delay of 1 up to 5 msec. The connector is unsafe in
the sense that it might fail at any time, such that we set our specific QoS characteristic
reliable to false.

To provide safe behavior, the following RT-OCL [16] constraint must hold. It de-
mands that a combination of role states where the front role is in state noConvoy and
the rear role is in state convoy is not possible. This is required because such a situation
would allow the front shuttle to brake with full intensity although another shuttle drives
in short distance behind, which causes a rear-end collision.

context DistanceCoordination inv:
not (self.oclInState(RearRole::Main::convoy) and

self.oclInState(FrontRole::Main::noConvoy))

It is shown in [10], that this property holds. As mentioned there, those patterns are
individually constructed and verified. In the next section, we show how components are
developed without compromising the verification results by composing roles of differ-
ent coordination patterns and refining their behavior. In our example, the Shuttle com-
ponent is a combination of refined versions of the RearRole and the FrontRole. For a
component, which combines different patterns respective the roles, the verified proper-
ties still hold due to the approach presented in [10]. Thus, components for mechatronic
systems are developed in a way similar to a construction kit using several proven and
verified building blocks and refine them to suit different requirements.

3.3 Local Real-Time Behavior

Figure 5 depicts the behavior of the Shuttle component from Figure 2, taken from [10]
and extended with real-time annotations. The Real-Time Statechart consists of three
orthogonal states FrontRole, RearRole, and Synchronization. FrontRole and RearRole
are refinements of the role behaviors from Figure 4 and specify in detail the commu-
nication that is required to build and to break convoys. Synchronization coordinates
the communication and is responsible for initiating and breaking convoys. The three
sub-states of Synchronization represent whether the shuttle is in the convoy at the first
position (convoyFront), at second position (convoyRear), or whether no convoy is built
at all (noConvoy). The whole statechart is a refinement of both role descriptions as it just
resolves the non-determinism from the roles from Figure 4 and does not add additional
behavior.

As mentioned above, components in the domain of mechatronic systems must meet
real-time requirements. In the specific example it needs not only to be specified that,
e.g. RearRole has to send a startConvoy message after receiving convoyOK, but also that
this has to be finished within a specific, predictable time. Therefore, we apply our Real-
Time Statecharts [11] for specification. Real-Time Statecharts respect that the firing of
transitions consumes time and that real physical, mechatronic systems can never react
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Fig. 5. Behavior of the Shuttle component

in zero time, but always with a delay. To represent this in the model, we make use of the
deadline construct:

In Figure 5 so called deadline intervals dc and d1 are used to specify a minimum
and a maximum duration for the time between triggering a transition and finishing its
execution. E.g. sending the message convoyProposalRejected to RearRole has to be
finished within the time specified by dc after receiving the message noConvoy in state
FrontRole::noConvoy::wait. As another example for predictable timing behavior (real-
time behavior) the change in Synchronization from noConvoy to convoyFront has to be
finished within d1.

3.4 Controller Integration

The Acceleration Control (AC) component contained in the Shuttle component (cf.
Figure 2) is a hybrid component. It consists of two discrete control modes which rep-
resent whether the shuttle is under velocity control or under distance control (see Fig-
ure 6). Further it has continuous in- and outputs. Dependent on the active discrete mode
either the current and the required velocity are used for the velocity controller or the cur-
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Fig. 7. Interface Statechart of the AC component

rent and required distance to the front shuttle as well as the velocity of the first shuttle
are used for the distance controller. The output a is the acceleration in any mode.

In order to embed the continuous controllers into the discrete states, the Real-Time
Statecharts are extended to hybrid ones. In Hybrid Statecharts each discrete state is
associated with a configuration of embedded component instances [9]. In this example,
each configuration consists of just one single feedback controller.

When a change occurs between the discrete states, a discrete switch between the
controllers could lead to an unsteadiness in the output signal a. This unsteadiness will
stimulate additional excitations which could lead to instability even when both con-
trollers are stable on their own. In order to avoid these unsteadinesses, output cross-
fading is applied [9]. This is specified by a fading function ffade1 resp. ffade2 and a
minimal and a maximal fading duration (df1 resp. df2 ) which is specified as an interval
as well.

Although the hybrid AC component has five different continuous input signals,
never all of them are required. When the component is in velocity control mode only
vcur and vreq are required, in distance control mode only Δcur, Δreq , and vFirst are
required. These dynamic interfaces are visualized by the so called Interface Statechart
in Figure 7.

The Interface Statechart abstracts from the component’s internals as it just contains
the externally relevant behavior: the different control modes, the modes’ continuous
in- and outputs, and the deadline information for switches between the control modes.
Whether fading is required and which kind of fading function is applied and which
components are associated to the discrete states is not important for the external view.
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Fig. 8. Behavioral embedding

This interface representation is used when the different components are embedded into
each other (see below).

The Shuttle and the AC component, which have been designed independent of each
other, are embedded hierarchically from the structural point of view (cf. Figure 2). As
their behavior is executed concurrently, we say AC is hierarchically, parallel embedded
into Shuttle. As it makes no sense for AC to be in state DistanceControl while Synchro-
nization is in state convoyFront, which represents the situation when there is no further
shuttle before, the two behavior descriptions have to be coordinated.

Therefore, the Shuttle statechart from Figure 5 is extended to a Hybrid Statechart.
Figure 8 depicts the orthogonal Synchronization state, whose sub-states embed different
configurations each consisting of one AC instance and its current internal state and con-
tinuous interface. So in Figure 8 is specified that AC has to be in state DistanceControl
when Synchronization is in state convoyRear. If Synchronization is in state noConvoy or
convoyFront, AC has to be in state VelocityControl. Consequently, a state change within
the orthogonal Synchronization state implies a state change in its embedded AC compo-
nent. As only the external visible information of the AC component is important when
it is embedded, the form of the embedded component is equal to the single states of the
Interface Statechart from Figure 7.

This kind of modeling has the advantage that it supports the decomposition into
multiple components that is required to handle the complexity in mechatronic systems.
Further the control engineering know-how is separated from the software engineering
know-how: The discrete coordination and communication is specified by the statechart
from Figure 5, the continuous behavior and the restrictions of the controller exchange is
specified in Figure 6 and the later integration is specified in Figure 8. Another advantage
is the support for flexible continuous interfaces.

In order to ensure that the results of the compositional verification are not invali-
dated by the detailed realization of the Shuttle component, the component realization
has to be a refinement of the role behavior (see Section 3.2). The statechart from Fig-
ure 5 is a refinement of the roles from Figure 4. Consequently, it needs to be ensured
that the embedding of AC still just refines the specified real-time behavior from Figure 5
and is not adding additional behavior or is in conflict with the real-time specification of
this superordinated component.

Assume, for example, in Figures 5 and 8 is specified that a change from state no-
Convoy to convoyRear has to be finished after 200 msec and that this change implies a
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change of the embedded AC component from VelocityControl to DistanceControl. Then
in Figure 7 the minimal fading duration may not be above 200 msec.

This example demonstrates how consistency is approved by simple syntactical
checks between the superordinated component and the Interface Statecharts of the em-
bedded components: In the above example df1 ⊆ dc must be satisfied. Such checks
have to be enforced for every possible change of the global state (the current global
state consists of the current states of all components). Due to the hierarchically, parallel
embedding, the global state space is restricted: Although Synchronization consists of
3 states and AC of 2 states, the hierarchical parallel composition does not consist of
2 ∗ 3 = 6 states, but just of 3 states.3 This information is contained in the specification
in Figure 8 and does not need to be derived by a costly reachability analysis. Conse-
quently, the number of consistency checks to be enforced are thus not exponential in
the number of states. If these consistency checks are successful, the results of the com-
positional model checking presented in Section 3.2 are valid even for components that
embed further components in the hierarchical, parallel manner (cf. [9]).

4 MECHATRONIC UML and Standard UML

The UML 2.0 [3] can be considered as the currently evolving de facto standard
for modeling complex software systems. Event though the standard UML 2.0 is not
specifically tailored for technical systems, it is frequently applied also in this domain
(cf. [17,4,18,19]) and actually includes most of the concepts of the Real-Time Object-
Oriented Modeling (ROOM) approach [20]. However, as the ROOM concepts focus
on architectural design and do not address the real-time or hybrid behavior of the op-
erational model at all, UML supports real-time aspects only rudimentarily and hybrid
behavior not at all. In the presented MECHATRONIC UML approach, the architectural
design must employ standard UML components and patterns in a well-defined rigorous
manner. The real-time communication protocols of each port or pattern role have to be
specified. While UML 2.0 offers so called Protocol State Machines (PSM) to do so,
we require that our real-time extension of the UML state machines named Real-Time
Statecharts are employed.

A relevant UML extension w.r.t. real-time is the UML Profile for Schedulability,
Performance, and Time [4]. The profile defines general resource and time models which
are used to describe the real-time specific attributes of the modeling elements such as
schedulability parameters or quality of service (QoS) characteristics. Besides an ab-
stract logic model, a more concrete engineering model can be specified by using these
extensions. The engineering model is later used for the required model analysis and
code generation. However, appropriate concepts for the real-time modeling at the logic
model level are missing and real-time aspects are only present at the level of the engi-
neering model. Thus, the developer has to map his logical model onto the technical con-
cepts such as threads and periods manually. Then, he has to test and adjust the logical
model as well as its mapping to the engineering model manually until the engineering
model mets all real-time constraints.

3 This is because the state combinations (convoyFront, DistanceControl), (noConvoy, Dis-
tanceControl), and (convoyRear, VelocityControl) are not reachable.



58 S. Burmester, H. Giese, and M. Tichy

The presented approach in contrast addresses real-time aspects at the logical model
level. The employed Real-Time Statecharts support deadlines, worst case execution
times, clocks, clock resets, time guards, and time invariants. Therefore they provide
powerful abstract means to specify complex timing requirements. A formally defined
semantics for them further enables the compositional verification by means of model
checking. MECHATRONIC UML thus really enables the model-driven development of
real-time systems as all required timing requirements are contained in the (logical)
model and the synthesis of the mapping to threads and their periods can be done au-
tomatically.

A request for proposals for UML for System Engineering (UML for SE) [21] by the
OMG currently address UML in the context of technical systems. The idea of UML for
SE is to provide a language that supports the system engineer in modeling and analyzing
software, hardware, logical and physical subsystems, data, personnel, procedures, and
facilities. The presented approach addresses some of these issues, but mainly focuses
on the specific requirements of hybrid, reconfigurable, mechatronic systems.

One distinguishing proposal for UML for SE is the Systems Modelling Language
(SysML),4 which extends a subset of the UML 2.0 specification. One extension, related
to the design of continuous and hybrid systems are Structured Classes, that describe the
fine structure of a class extended by continuous communication links between ports.
In Parametric Diagrams the parametric (arithmetic) relations between numerical at-
tributes of instances are specified and the nodes of Activity Diagrams are extended
with continuous functions and in- and outputs. This enables to model simple difference
equations, but using this approach to model complex feedback-controllers leads to an
overwhelming complexity. The specification or the integration of continuous behavior
in form of continuous components is not supported. Further SysML does not support
reconfiguration, as the specification of parametric relations is always static.

In contrast to UML 2.0 and the SysML proposal, our approach provides the re-
quired support for modeling of hybrid, reconfigurable systems by first refining UML
ports into discrete, continuous, and hybrid ones such that hybrid components can be
modeled with UML components. To specify the reconfiguration and hybrid behavior
of these components, we extended Real-Time Statecharts towards Hybrid Statecharts
which employ UML instance diagrams of the subordinated components to specify the
state-dependent embedding and coordination. The formal definition of the embedding
for Hybrid Statecharts enables to check efficiently whether an embedding is consistent.
A consistent embedding further ensures, that the real-time properties, verified through
compositional model checking, still hold for the more detailed hybrid system behavior.

5 Related Work

Besides UML and its profiles, a number of proprietary approaches for the modeling of
technical systems with UML exist.

Within the IST project AIT-WOODDES hierarchical timed automata (HTA) [5]
have been invented to enable the modeling and verification of complex real-time be-
havior. HTA are a hierarchial extension of timed automata [15] and they provide most

4 http://www.sysml.org
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of the powerful modeling concepts of statecharts as well as clocks. A mapping to multi-
ple parallel running flat timed automata permits to verify the model by using the model
checker UPPAAL [14]. Code synthesis has also been addressed in [22], however, the
approach is restricted to flat automata and does not take into account the delays that
occur when transitions are fired. Our approach for code generation respects hierarchy,
parallelism, and the real-time specifications [11,23].

The aim of the IST OMEGA project [6] is to ensure the correctness of embedded
systems. In the approach, the UML has been extended by additional time constructs and
a formally defined semantics is intended. However, unlike our approach, there is no sup-
port for hybrid behavior and compositional verification. Verification is only supported
for the semi-automatic verification via theorem proving.

Like the presented approach, HyROOM [7] and the underlying HyCharts [8] sup-
port the component-based modeling of hybrid systems. The software’s architecture is
specified similar to ROOM/UML-RT and the behavior is specified by statecharts whose
states are associated with systems of ordinary differential equations and differential
constraints or Matlab/Simulink block diagrams. These approaches provide means for
the reconfiguration of systems in terms of changing the continuous behavior. But it is
only possible to reconfigure the model inside a component on one hierarchy-level. In
contrast to that, our approach allows for a complex reconfiguration altering the structure
and concerning more than one hierarchy-level. Support for compositional verification
of models is not addressed by any of these approaches.

6 Conclusion and Future Work

Reconfigurable mechatronic systems in the domain of safety-critical distributed systems
must be designed with great care. MECHATRONIC UML not only supports the model-
driven development of such systems respecting real-time requirements, but also allows
for a mixture of discrete event-based as well as continuous behavior. In addition, the
applied modeling approach contains means for the compositional verification of safety-
critical properties. Finally, source code is synthesized from the models, which respects
the real-time constraints and safety requirements of the model.

MECHATRONIC UML further refines the industry standard UML where possible
and provides a well defined UML subset as well as a guideline how to develop safety-
critical reconfigurable mechatronic systems.

Tool support (in form of a number of plug-ins for the Fujaba Tool Suite5) for the
specification, verification and automatic source code synthesis of the Real-Time State-
charts and the real-time coordination patterns exists. For the support of hybrid behavior
a prototypic implementation exists and we are currently working on the tool support.

In the future, we plan to employ graph transformations [24] to describe the recon-
figuration of the behavior w.r.t. the online addition or removal of coordination pattern
roles. By this reconfiguration, the hybrid components reconfigure themselves to differ-
ent coordination scenarios to optimize their memory and processing power footprints.
These reconfigurations specified by graph transformations are also targets for the veri-
fication of safety-critical properties.

5 http://www.fujaba.de
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We further plan to integrate MECHATRONIC UML with our approaches for auto-
matic deployment [25] and dependability [26] with UML.
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Abstract. The paper describes a new graphical model transformation language 
MOLA. The basic idea of MOLA is to merge traditional structured program-
ming as a control structure with pattern-based transformation rules. The key 
language element is a graphical loop concept. The main goal of MOLA is to de-
scribe model transformations in a natural and easy readable way.  

1   Introduction 

The Model Driven Architecture (MDA) initiative treats models as proper artifacts 
during software development process and model-to-model transformations as a proper 
part of this process. Therefore there is a growing need for model transformation lan-
guages and tools that would be highly acceptable by users. Though model transforma-
tions would be built by a relatively small community of advanced users, the prerequi-
site for broad acceptance of transformations by system developers is their easy read-
ability and customizability.  

Model transformation languages to a great degree are a new type of languages 
when compared to design and programming languages. The only sound assumption 
here is that all models in the MDA process (either UML-based models or other) 
should be based on metamodels conforming to MOF 2.0 standards.   

The need for standardization in the area of model transformation languages led to 
the MOF 2.0 Query/Views/Transformations (QVT) request for Proposals (RFP)[1] 
from OMG.  

To a great degree the success of the MDA initiative and of QVT in particular will 
depend on the availability of a concrete syntax for model-to-model transformations 
that is able to express non-trivial transformations in a clear and compact format that 
would be useful for industrial production of business software [2]. 

QVT submissions by several consortiums have been made [3, 4, 5], but all of them 
are far from a final version of a model transformation language. Currently the pro-
posal most likely to be accepted seems [3] – actually a merge of several initial pro-
posals. Several serious proposals for transformation languages have been provided 
outside the OMG activities. The most interesting and complete of them seem to be 
UMLX [6] and GReAT [7]. Some interesting transformation language proposals use 
only textual syntax, e.g., [15].  

According to our view, and many others [2], model transformations should be de-
fined graphically, but should combine the graphical form with text where appropriate. 
Graphical forms of transformations have the advantage of being able to represent 
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mappings between patterns in source and target models in a direct way. This is the 
motivation behind visual languages such as UMLX, GReAT and the others proposed 
in the QVT submissions. Unfortunately, the currently proposed visual notations make 
it quite difficult to understand a transformation. 

The common setting for all transformation languages is such that the model to be 
transformed (source model) is supplied as a set of class and association instances 
conforming to the source metamodel. The result of transformation is the target 
model - the set of instances conforming to the target metamodel. Therefore the 
transformation has to operate on instance sets specified by a class diagram (actually, 
the subset of class notation, which is supported by MOF). 

Approaches that use graphical notation of model transformations draw on the theo-
retical work on graph transformations. Hence it follows that most of these transforma-
tion languages define transformations as sets of related rules. Each rule has a pattern 
and action part, where the pattern has to been found (matched) in the existing instance 
set and the actions specify the modifications related to the matched subset of in-
stances. This schema is used in all of the abovementioned graphical transformation 
languages. Languages really differ in the strength of pattern definition mechanisms 
and control structures governing the execution order of rules [8]. 

It should be mentioned that an early pioneer in the area (well before the MDA era)  
is the PROGRES language [9]. This semi-graphical language offered pattern-based 
graph rewrite rules applicable to “models” described by schemas (actually, metamod-
els). The execution of rules is governed by the traditional structured control constructs –  
sequence, branch and loop, though in the form of Dijkstra’s guarded commands. 

The current MDA-related graphical transformation languages – UMLX and 
GReAT use relatively sophisticated pattern definition mechanisms with cardinality 
specifications (slightly more elaborated in GReAT). The control structure in UMLX 
is completely based on recursive invocations of rules. The control structure of GReAT 
is based on hierarchical dataflow-like diagrams, where the only missing control struc-
ture is an explicit notation for loops (loops are hidden in patterns). The proposal [3] 
also offers elaborated patterns, which are combined with a good support for recursive 
control structures. Since the PROGRES project is now inactive, there currently is no 
transformation language based on traditional control structures. 

This paper proposes a new transformation language MOLA (MOdel transforma-
tion LAnguage). The prime goal of MOLA is to provide an easy readable graphical 
transformation language by combining traditional structured programming in a 
graphical form (a sort of “structured flowcharts”) with rules based on relatively sim-
ple patterns. This goal is achieved by introducing a natural graphical loop concept, 
augmented by an explicit loop variable. The loop elements can easily be combined 
with rule patterns. Other structured control elements are introduced in a similar way. 
In the result, most of typical model transformation algorithms, which are inherently 
more iterative than recursive, can be specified in a natural way. The paper demon-
strates this on the traditional MDA class-to-database transformation example and on 
the statechart flattening example – an especially convincing one. Some extensions of 
MOLA are also sketched. 
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2   Basic Constructs of MOLA  

This section presents a brief overview of basic constructs of MOLA. The MOLA lan-
guage is a procedural graphical language, with control structures taken from tradi-
tional structured programming. The elements specific to model transformations can 
easily be combined with traditional language elements such as assignment statements. 
A program in MOLA is sequence of graphical statements, linked by dashed arrows:  

 

A statement can be an assignment or a rule – an elementary instance transforma-
tion statement, however the most used statement type in MOLA is a loop. There are 
two types of loops, which will be depicted in the following way:  

(the first type) or  (the second type). 

A loop body always contains one or more sequences of graphical statements. Each 
body sequence starts with a loop head statement declaring the loop variable for this 
sequence. In MOLA the loop variable represents an instance of the given class. In 
order to distinguish it from other class instances defining its context, the loop variable 

is shown with a bold frame: c:Class . The loop head statement, besides the 

loop variable, typically contains also instance selection conditions, which constrain 
the environment of a valid loop variable instance. The UML object (instance specifi-
cation) notation is used both for the loop variable and its environment description – it 
expresses the fact that any valid instance from the instance set of the given class in the 
source model must be used as a loop variable value during the loop execution. 

The semantics of both types of loops differ in the following way. A type one loop 
is executed once for each valid instance from the instance set – but the instance set 
itself may be modified (extended) during the loop execution. The type two loop con-
tinues execution while there is at least one valid variable instance in the instance set 
(consequently, the same loop variable instance may be processed several times). In an 
analogy to some existing set and list processing languages, it is natural to call type 
one loops FOREACH loops and type two loops - WHILE loops in MOLA. 

Another important statement type is the rule – the specification of an elementary 
instance transformation. A rule contains the pattern specification – a set of elements 
representing class instances and association instances (links), built in accordance with 
the metamodel. In addition, the rule contains the action specification – what new class 
instances are to be built, what associations (links) drawn, what instances are to be 
deleted, what attributes are to be assigned value etc. Its semantics is obvious – locate 
a pattern instance in the source model and perform the specified actions. When a rule 
has to be applied – it is determined by the loop whose body contains the rule. A rule 
can be combined with the loop head – a loop head can also contain actions, which are 
performed for each valid loop variable instance. 
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All MOLA statements, except loops, are graphically enclosed in grey rounded rec-

tangles: . 

Further, more precise definitions of MOLA syntax and semantics will be given on 
toy examples. 

Let us assume that a toy metamodel visible in Fig.1 is used. 

A
attrA1:Integer
attrA2:String

B
attrB:String

W
attrW:String

roleA

roleB 0..1
 *

roleA

roleW

 0..1  *

 

Fig. 1. Metamodel for the toy example 

Then a MOLA program, which sets the attribute attrA1 to 1 for those instances of 
the class A that are linked to at least one instance of class B, is shown in Fig. 2. The 
loop (FOREACH type) contains two statements – the loop head and a trivial rule 
which sets the value of attribute attrA1 in the loop variable. First, some comments on 
the loop head statement. The selection condition consisting of an instance of B linked 
by the only available association (roleB) to the loop variable (a:A) requires that at 
least one such instance of B must exist for a given instance of A to be a valid loop 
variable instance. We want to emphasize that an association with no constraints  
attached in the loop head (or in a rule pattern) always means – there exists at least 
one instance (link) of such an association. The loop head in MOLA is also a kind of 
pattern.  

The second statement in the loop references the same instance of A – the loop 
variable, this is shown by prefixing the instance name by the @ character.   

The second program example (in Fig.3) finds how many instances of B are linked 
to each instance of  A.  

a1: A
attrA1 := 0

@a1: A
attrA1 := attrA1+1

b: B

a: A b: B

@a: A
attrA1 :=1

roleB

roleB

 

Fig. 2. Program finding A’s linked to a B     Fig. 3. Program counting B’s linked to an A  
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a1: A

@a1: A

b: B
: W
attrW :=@a1.attrA2+b.attrB

roleB

#resultW

roleA

roleW

 

Fig. 4. Program building W for each B 

This example demonstrates a natural use of nested loops. The outer loop (with the 
loop variable a:A) is executed for every instance of A. The loop head sets also the 
initial value of the attribute attrA1. The nested loop, which is executed for those in-
stances of B which are linked to the current A, performs the counting.  

The next more complicated task is to build an instance of  W for each B which is 
linked to an A, link it by an association (roleW) to the A and assign to its string pa-
rameter (attrW) the concatenation of string parameters in the corresponding instances 
of A and B. Fig. 4 shows the corresponding MOLA program. 

The same nested loops as in the previous example are used. But here the inner loop 
head is also a rule with more complicated action – building an instance of  W, linking 
it to the current loop variable instance of the outer loop and setting the required value 
of attrW.   

The new elements – instances and links are shown with dotted lines (and in red 
color) in MOLA. The expression for attrW references the attribute values from other 
instances – they are qualified by the corresponding instance names. The association 
linking the instance of W to the instance of B is a special one – it is the so called 
mapping association (which actually should also be specified in the metamodel). 
Mapping associations are typically used in MDA-related transformations for setting 
the context of next subordinate transformations and for tracing instances between 
models (therefore they normally link elements from different metamodels). Role 
names of mapping associations are prefixed by the # character in MOLA.  

Two more MOLA constructs should be explained here. The first one is the NOT 
constraint on associations in patterns – both in loop heads and ordinary rules. It ex-
presses the negation of the condition specified by the association – there must be no 
instance with specified properties linked by the given link. Fig. 5 shows an example 
where an instance of W is built for those A which have no B attached. 

b: Ba: A

: W

a: A
{attrA2="persistent"}

: WroleB
{NOT}

roleA
roleW

roleA

roleW

 

Fig. 5. NOT constraint    Fig. 6. Attribute constraint 
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Another one is attribute constraints. Fig. 6 shows an example where an instance of  
W is built for those A where the attribute attrA2 has the specified value. The Boolean 
expression in braces in general uses OCL syntax (in addition, it may contain also ex-
plicit qualified references to other instances in the pattern). 

There are some more elements of MOLA which are not used in the examples of 
this paper and therefore will not be explained in detail. Besides the attributes in the 
source metamodel, instances may have “temporary” computed attributes which can be 
used as variables for storing values during the computation. These temporary attrib-
utes are also defined in the metamodel. Similarly, there may be temporary associa-
tions. There is also one more control structure – an equivalent of the if-then-else (or 
case) statement. There is also a subprogram concept in MOLA and the subprogram 
call statement, where the parameters can be references to instances used in the calling 
program (typically, to loop variables) or simple values. The called subprogram has 
access to the source model and can add or modify elements in the target model. 

3   UML Class Model to Relational Model Example in MOLA 

Further description of MOLA will be given on the basis of the “standard benchmark 
example” for model transformation languages – the UML class model to relational 
database model transformation example. This example has been used for most of 
model transformation language proposals (see e.g., [3, 4, 6, 10]). However, no two 
papers use exactly the same specification of the example. Here we have chosen the 
version used by A. Kleppe and J. Warmer in their MDA book [10]. 

The source is a simplified class diagram built according to the metamodel in Fig. 7 
(it is a small subset of the actual UML metamodel). Any class which is present in the 
source model has to be transformed into a database table. Any class attribute has to be 
converted into a table column. Attribute types are assumed to be simple data types – 
the problem of  “flattening” the class-typed attributes is not considered in this version. 
We assume here that type names in class diagram and SQL coincide (in reality it is 
not exactly so!). 

Classifier
name:String

TypedElement
name:String

Association

Feature
visibility:VisibilityKind

DataType Class

AttributeAssociationEnd
lower:LowerBound
upper:UpperBound
composition:Boolean

typed
type *
 1

 association
 end  1
2

 class
 feature 1

 *

otherEnd  0..1

 

Fig. 7. Simplified class metamodel 



68 A. Kalnins, J. Barzdins, and E. Celms 

 

Table
name:String

Column
name:String
nullable:Boolean

SQLDataType
name:String

Key
name:String

ForeignKey
name:String

 key

 column

 0..1

 1..*

primary

 1

 0..1

type
 1

 table
 column 1

 *

referencedKey

 *

 1

 table

foreign

 1

 *

 column

foreign

 1..*

 *
 

Fig. 8. Simplified relational database metamodel 

cl: Class

@cl: Class
t: Table
name:=cl.name

k: Key
name:=@cl.name+"ID"

int: SQLDataType
{name="integer"}

col: Column
name :=@cl.name+"ID"
nullable :=false

at: Attribute

@cl: Class

dt: DataType

t: Table

col: Column
name :=at.name
nullable :=true

: SQLDataType
{name=dt.name}

type

#tableForCl

feature

#tableForCl

#keyColForCl

primary

#keyForCl

type

table
column

type

#colForAttr

table

column

 

Fig. 9. Class to database transformation (part 1) 

Each converted table has an “artificial” primary key column with the type integer. 
The treatment of associations is quite realistic. One-one or one-to-many associations 
result into a foreign key and a column for it in the appropriate table (for one-one – at 
both ends). A many-to-many association is converted into a special table consisting 
only of foreign key columns (and having no primary key). Each foreign key refer-
ences the corresponding primary key.  
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We should remind that according to UML semantics, in the metamodel the type as-
sociation from an Association End leads the Class at that end, but class association – 
to Class at the opposite end. 

The resulting database description must correspond to a simplified SQL metamodel 
given in Fig. 8.  

The metamodels and transformation specification are exactly as in [10] except that 
some inconsistencies and elements unused in the given task are removed.  

More formally, in MOLA the source and target metamodels (Fig. 7 and 8) are 
combined into one common metamodel, where mapping associations can also be 
 

as: Association e1: AssociationEnd
{upper=1}

e: AssociationEnd
{upper=1}

@as: Association endCl: Class pk: Key

othEndCl: Class

int: SQLDataType
{name="integer"}

tb: Table

fk: ForeignKey
name :=e.name

fkCol: Column
name :=e.name
nullable :=false

e1: AssociationEnd
{upper=1}

astb: Table
name :=as.name

as: Association

@as: Association

e: AssociationEnd

t: Table

endCl: Class pk: Key

fk: ForeignKey
name :=e.name

fkCol: Column
name :=e.name
nullable :=false

int: SQLDataType
{name="integer"}

type

end

#tableForCl

association
#keyForCl

class

association

type

#tableForAssoc

type #keyForClass
referencedKey

table

column

foreign

column

end
{NOT}

#tableForAssoc

table
column

foreigntable

#colForEnd

#fkForEnd foreign

column

foreign
table

#colForEnd
type

#fkForEnd

referencedKey

 

Fig. 10. Class to database transformation (part 2) 
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specified. We do not present this combined metamodel here, role names of mapping 
associations can be deduced from MOLA diagrams (Fig. 9 and 10). 

Fig. 9 and 10 show the complete transformation program in MOLA. The part 1 
(Fig. 9) implements the required class-to-table transformations, but the part 2 – the 
transformation of associations into foreign keys and appropriate columns. 

A complete program in MOLA starts with the UML start symbol and ends with 
end symbol. In between there are statements connected by arrows; in the given pro-
gram – three top-level loops (one for class instances and two for associations). All 
loops are of FOREACH type.  

Now some more detailed comments for this program. The first loop is executed 
once for each class in the source set and during each loop execution the corresponding 
database elements – the table, the primary key and the column for it are built. The 
mapping association #tableForCl is used in the condition for the inner loop – to en-
sure that the correct Table instance is taken. This loop is executed once for each at-
tribute and builds a column for each one. Here it is assumed that SQL data types (as 
instances of the corresponding class) are pre-built and the appropriate one can always 
be selected.  

The second and third loops in totality are executed for each association instance – 
the second loop for those instances that have multiplicity 0..1 or 1..1 at least at one 
end and the third one for those which are many-to-many. This is achieved by adding 
mutually exclusive selection conditions to both loop variable definitions. These condi-
tions are given in a graphical form. The first one uses the already mentioned in sec-
tion 2 fact that an association in a condition (pattern) requires the existence of the 
given instance. The other condition uses the {NOT} constraint attached to the associa-
tion – no such instance can exist. Then both loops have an inner loop - for both ends 
(even in the first case there may be two “one-ends”). Both inner loops use mapping 
associations built by previous rules (#keyForCl, #tableForCl) in their conditions. The 
type for “foreign columns” is integer – as well as that for “primary columns”. 

An alternative form of control structure for processing associations could be one 
loop with an if-then-else statement in the body (Fig. 11).  

One more alternative representation could be to make the Fig. 10 a transformation 
of its own (e.g., TransformAssociations) and add the call statement TransformAssocia 
 

. . . . . .

as:Association

@as:Association

e1:AssociationEnd
{upper=1}

e1:AssociationEnd
{upper=1}

@as:Association

 end  end {NOT}

 

Fig. 11. Loop with an if-then-else statement 

-
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tions (this time without parameters) to the bottom of Fig. 9. In our case there is no 
great need in this since the whole transformation example actually fits in one A4 
page. However, the subprogram mechanism in MOLA permits to define arbitrarily 
complicated transformations by well-proven methods of structural programming. 

4   Statechart Flattening Example  

This section presents another example – the flattening of a UML statechart. This ex-
ample was first used in [7] to demonstrate the GReAT transformation language. Due 
to space limits, we use a version where the statechart can contain only composite 
states with one region (OR-states in terms of [7]). Composite states may contain any 
type of states, with an arbitrary nesting level. Such a statechart must be transformed 
into an equivalent “flat” statechart (which contains only simple states). The informal 
flattening algorithm is well known (most probably, formulated by D. Harel [11]). A 
version of this example with much simplified problem statement is present also in [3].  

The simplified metamodel of the “full” (hierarchical) statechart is depicted in  
Fig. 12. There are some constraints to the metamodel specifying what is a valid state-
chart. There are “normal” transitions for which the event name is nonempty and “spe-
cial” ones with empty event. These empty transitions have a special role for state 
structuring. Each composite state must contain exactly one initial state (an instance of 
Init) and may have several final states. There must be exactly one empty transition 
from the initial state of a composite state (leading to the “default” internal state). The 
same way, there must be exactly one empty transition from the composite state itself  
- the default exit. This exit is used when a contained final state is reached. Otherwise, 
transitions may freely cross composite state boundaries and all other transitions must 
be named. Named transitions from a composite state have a special meaning (the “in-
terrupting” events), they actually mean an equally named transition from any con-
tained “normal” state – not initial or final. This is the most used semantics of compos-
ite states (there are also some variations).  

All states have names – but those for initial and final states actually are not used. 
Names are unique only within a composite state (it acts as a namespace) and at the top 
level.  

SimpleState Init FinCompositeState

State
name:String

Transition
event: String [0..1]

in
dst *
 1

out
src *
 1

container

contents

 0..1

 1..*

 

Fig. 12. Metamodel of hierarchical statechart 
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The traditional flattening algorithm is formulated in a recursive way. Take a top-
most composite state (i.e., one not contained in another composite state). There are 
three ways how transitions related to this state must be modified: 

1. Transitions entering the composite state itself must be redirected to the state to 
which the empty transition from its initial state leads. 

2. Transitions leading to a final state of this composite state must be redirected to 
the state to which the empty transition from the composite state leads. 

3. Named transitions from the composite state must be converted into a set of 
equally named transitions from all its “normal” states (with the same destination) 

Then the name of the composite state must be prefixed to all its contained normal 
states and the composite state must be removed (together with its initial and final 
states and involved empty transitions). All this must be repeated until only simple 
states (and top level initial/final ones) remain. 

A simple analysis of this algorithm shows that the redirection of transitions may be 
done independently of the composite state removal – you can apply the three redirec-
tion rules until all transitions start/end at simple states (or top initial/final). The set of 
simple states is not modified during the process – only their names are modified. 

Namely this modified algorithm is implemented in the MOLA program in Fig. 13. 
It contains two top-level loops – the first one performs the transition redirection and 
the second – the removal of composite states.  

Both top-level loops are WHILE-type – especially, in the first loop a transition 
may be processed several times until its source and destination states reach their final 
position. A closer analysis shows that the second loop actually could be of 
FOREACH type, but the original algorithm suggests WHILE.  

The program performs a model update – source and target metamodels coincide, 
simply, some metaclasses cannot have instances in the target model. Mapping asso-
ciations are not used in this example. 

The first loop contains three loop head statements – all specify the instance 
t:Transition as a loop variable, but with different selection conditions. According to 
the semantics of MOLA, any Transition instance satisfying one of the conditions (one 
at a time!) is taken and the corresponding rule is applied (note that the conditions are 
not mutually exclusive). All this is performed until none of the conditions applies – 
then all transitions have their final positions. The first two rules contain a dashed line – 
the association (link) removal symbol. The link is used in the selection condition, but 
then removed by the rule. The third path through the loop contains the instance re-
moval symbol. 

Namely the use of several lop heads per loop is a strength of MOLA – this way 
inherently recursive algorithms can be implemented by loops. 

The second loop – the removal of composite states also has a recursive nature to a 
certain degree – it implements the so-called transitive closure with respect to finding 
the deepest constituents (simple states) and computing their names accordingly to the 
path of descent.  

It shows that transitive closure can be implemented in MOLA in a natural way 
(even the FOREACH loop could be used for this). The other constructs in this loop 
are “traditional” – except, may be, the fact that several instances may be deleted by a 
rule in MOLA.  
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c: CompositeState

ds: State

t: Transition
{event->notEmpty()}

@t: Transition

: Compos iteState

ss: State

t: Transition
{event->notEmpty()}

nt: Trans ition
{event->isEmpty()}

: Init

ds: State

ss: State

: Fin

: Compos iteState

nt: Trans ition
{event->isEmpty()}

ds: State

t: Transit ion
{event->notEmpty()}

ss: State

@ds: State

@c: CompositeState

: Transition
event:=t.event

ctr: Trans ition
{event->isEmpty()}

@tc: CompositeState

@tc: CompositeState

: Init
intr: Transition
{event->isEmpty()}

tc: CompositeState
name

c: CompositeState

@tc: CompositeState

f: Fin

@f: Fin

@tc: CompositeState

@tc: CompositeState

: State
name:=@tc.name+"-"+name

dst

contents

srcsrc

dst

contents

src

src

dst

contents

src

contents
src

container
{NOT}

contents

contents

contents

dst

contents

src

dst

dst

dst

src

dst

 

Fig. 13. Statechart flattening 
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5   Extended Patterns in MOLA 

The rule in the previous example for computing the name of a state contained in a 
composite state to be removed actually is the simplest case of a typical transformation 
paradigm – the transitive closure. Experiments show that transitive closure in all cases 
can be implemented in MOLA. However, not always it is so straightforward as in  
Fig. 13, sometimes temporary associations and attributes and nested loops are re-
quired for this task. A typical example is the class to database transformation as speci-
fied in [3, 6], where the “flattening” of class-typed attributes must be performed – if 
the type of an attribute is a class, the attributes of this class must be processed and so 
on. If an attribute with a primitive data type is found in this process, a column with 
this type is added to the table corresponding to the original (“root”) class. The name 
of the column is the concatenation of all attribute names along the path from the root 
class to the attribute. It is easy to see that all such paths must be traversed. 

Since the transitive closure is a typical paradigm in MDA-related tasks, an exten-
sion of MOLA has been developed for a natural description of this and similar tasks. 
This extension uses a more powerful – the looping pattern, by which computation of 
any transitive closure can be implemented in one rule. This feature has been described 
in details in [12], here we present only the above-mentioned example with some 
comments.  

Fig.14 shows one statement in extended MOLA which is both a FOREACH loop 
over Class instances and a rule with an extended pattern. In contrast to patterns in 
basic MOLA, this pattern matches to unlimited number of instances in the source 
model. Most of the associations in this pattern are directed (using the UML navigabil-
ity mark). The semantics of this pattern is best to be understood in a procedural way. 
Starting from a valid instance of loop variable (selected by the undirected part of the 
pattern – one association), a temporary instance tree is being built, following the  
directed associations. 

a2.type.oclIsTypeOf(
PrimitiveDataType)

a:Attribute
?prefix :=cl.?prefix+name+'-'

t:PrimitiveDataType

tb:Tablecl:Class
?prefix :="c-"

a2:Attribute
?prefix :=c2.?prefix+name

c2:Class
?prefix := PRED.?prefix

col:Column
name := a2.?prefix
type :=t.name

:SQLDataType
{name=t.name}

type
{OPT}

type

#tableForCl

 feature {ALL}

#colForAttr

 1

 1

 table

 column

type
 feature {ALL}

type {OPT}

 

Fig. 14. Transitive closure by extended pattern 
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Associations in this pattern use two new qualifiers – ALL and OPT. The first one 
says the instance tree has to contain all possible valid links of this kind (a fan-out oc-
curs), but the second one – that the link is not mandatory for the source instance to be 
included in the tree (an association without qualifier is mandatory in MOLA). The 
white square icons in c2 and a2 specify that for these pattern elements instance copies 
are built in the tree (but not the original source model instances used) – it is easy to 
see that in order to obtain all paths from the root class to primitively-typed attributes 
namely such copying is required. Another new pattern syntax element is the UML 
multiobject notation for some elements – to emphasize that a fan-out occurs at these 
places during the pattern match. The looping part of the pattern – the elements c2 and 
a2 actually are traversed as many times during the matching (tree building) process as 
there are valid candidates in the source model. The rule uses the temporary attribute 
?prefix (with the type String), whose scope is only this rule. The values of this attrib-
ute are computed during the building of the match tree (for each of its node) – it is 
easy to see that the expressions follow the building process (the special PRED quali-
fier means any predecessor). For this extended pattern the building action also gener-
ates many instances of Column – one for each instance of a2 in the tree (it is a copy!) 
which satisfies the building condition in OCL.  

Extended patterns have more applications, however their strength most clearly ap-
pears on complicated transitive closures like the one in Fig. 14. 

6   Conclusions 

MOLA has been tested on most of MDA-related examples – besides the ones in the 
paper, the class to Enterprise Java transformation from [10], the complete UML state-
chart flattening, business process to BPEL transformation and others. In all cases, a 
natural representation of the informal algorithms has been achieved, using mainly the 
MOLA loop feature. This provides convincing arguments for a practical functional 
completeness of the language for various model to model transformations in MDA 
area. Though it depends on readers’ mindset, the “structured flowchart” style in 
MOLA seems to be more readable and also frequently more compact than the pure 
recursive style used e.g., in [6]. Though recursive calls are supported in MOLA, this 
is not the intended style in this language. For some more complicated transformation 
steps the extended MOLA patterns briefly sketched in section 5 fit in well. 

The implementation of MOLA in a model transformation tool also seems not to be 
difficult. The patterns in basic MOLA are quite simple and don’t require sophisticated 
matching algorithms. Due to the structured procedural style the implementation is 
expected to be quite efficient. All this makes MOLA a good candidate for practically 
usable model transformation language.  

Initial experiments with MOLA have been performed by means of the modeling 
tool GRADE [13, 14], in the development of which authors have participated. A sepa-
rate MOLA tool is currently in development. A graphical editor for MOLA has al-
ready been developed, the pictures for this paper have been obtained by this editor. A 
MOLA execution system is also close to completion. 
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A Graphical Notation to Specify Model Queries  
for MDA Transformations on UML Models 
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Abstract. Specifying queries on models is a prerequisite to model 
transformations in the MDA because queries select the model elements that are 
the source of transformations. Current responses to OMG's MOF 2.0 QVT RFP 
mostly propose to use (and/or extend) OCL 2.0 as specification language for 
queries. In this paper, we demonstrate that using textual notations (like OCL) 
quickly leads to complex query statements even for simple queries. In order to 
overcome this handicap, we present a graphical notation based on the UML that 
facilitates comprehension of query statements as well as estimation of the 
(ultimately) selected model elements. We advocate that queries should be 
specified in terms of user model entities and user model properties (rather than 
meta model entities and meta model properties) for the sake of feasibility and 
comprehensibility to the user. 

1   Introduction 

Model-Driven Architecture (MDA) [16] aims to assist the development process of 
software intensive systems by providing a standardized framework for the 
specification of software artifacts and integration directives. Its key idea is to install 
traceable relationships between software artifacts of different domains or different 
development phases. In that way, the MDA aims to improve software quality since 
software developers can directly relate the final program code to design decisions 
and/or requirement specifications of the early phases of software development. It 
allows them to validate and test the final code for compliance to particular 
requirements, thus making maintenance much simpler. Further, the MDA promotes 
reuse of existing system solutions in new application domains by means of conceptual 
mappings and artifact integration.  

The principal software artifact of consideration in the MDA are machine-readable 
models. The underlying technique of the MDA is model transformation. 
Transformations are accomplished according to the tracing and mapping relationships 
established between the software artifacts (i.e., between their models).  

Striving for a standardized language to define such model transformations, the 
OMG released the "MOF 2.0 Query / Views / Transformation (QVT)" Request For 
Proposal (RFP) in April 2002 [17]. It has been one of the mandatory requirements to 
come up with a query language to select and filter elements from models, which then 
can be used as sources for transformations. In response to the RFP, several proposals 
for general-purpose model transformation languages have been submitted (e.g., [1], 
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[5], [9], and [20]). Most of them propose to use (and/or extend) the Object Constraint 
Language (OCL) 2.0 [18] as query language (e.g., [9] [20] [1]). Having said so, only 
one proposition [20] provides a graphical representation for its query language. 

We think, though, that a graphical notation to specify and visualize model queries is 
inevitable for the MDA to drive for success. We think that software developers require 
a graphical representation of their selection queries, which they can use to 
communicate their ideas to colleagues, or to document design decisions for maintainers 
and administrators. A graphical visualization would facilitate their comprehension on 
where a transformation actually modifies their models. We think that using a textual 
notation (like OCL), instead, would quickly turn out to lead to very complex 
expressions even when defining a relatively small number of selection criteria. 

In this paper we present a graphical notation to specify selection queries on models 
specified in the Unified Modeling Language (UML) [19], aiming to overcome the 
lack of most of the RFP responses when working in a UML model context. We 
introduce several abstraction means in order to express various selection criteria, and 
specify how such selection criteria are evaluated by OCL expressions. Query models 
built from such abstraction means are called "Join Point Designation Diagrams" [26] 
(or "JPDD" in short). JPDDs originate in our work on Aspect-Oriented Software 
Development (AOSD) [7] in general, and on the visualization of aspect-oriented 
concepts in particular. They are concerned with the selection of points in software 
artifacts that are target to modifications (so-called "join points" in AOSD). They 
extend the UML with selection semantics. And they make use of, and partially 
extend, UML's conventional modeling means.  

This paper is an immediate follow-up paper of our submission [24] to the "MDA 
Foundation and Application" workshop [3]. We carefully revised that submission 
taking into account the comments and remarks that we received at the workshop. 
Meanwhile, JPDDs have also been presented in [26]. While there we have identified 
the general need to specify queries on software artifacts as a new evolving design 
issue, here we concentrate on the integration of JPDDs into the MDA context. In 
particular, we describe a generic mechanism to map JPDDs onto OCL statements, 
thus giving way to the integration of our approach with the current QVT submissions. 

The remainder of this paper is structured as follows: In the first section we 
emphasize the need of a graphical notation to specify selection queries with the help of 
an example. After that, we briefly sketch the background that JPDDs originate from, 
and point to the parallels of query specification in AOSD and MDA. In section 4, we 
briefly describe the abstract syntax of our notation. We then present the graphical 
means as well as the OCL expressions by which they are evaluated. We conclude the 
paper with relation to other work and a summary. 

2   Motivation 

In order to make the motivation of this work more clear, we take a look at a 
hypothetical, yet easy-to-understand example (adopted from [20]): Imagine, for some 
arbitrary model transformation, we need a model query that selects all classes with 
name "cn" that either have an attribute named "an", or – in case not – that have an 



 A Graphical Notation to Specify Model Queries 79 

 

association to some other class with name "cn1" which in turn has an attribute named 
"an". Fig. 1, right part, demonstrates how such query would be expressed using the 
textual and graphical notation as proposed in [20]. Fig. 1, left part, shows the same 
query, once expressed as an OCL statement, and once expressed as a JPDD. 

As you can learn from the example, even a simple model query quickly results in a 
complex query expression – when using a textual notation (cf. Fig. 1, top part). As a 
result, comprehension of the query and estimation what model elements finally will 
be selected is rather difficult. The graphical notation shown in Fig. 1, bottom right 
part, helps to keep track of what is going on in the selection query. However, since the 
query is specified in terms of meta model entities and meta model properties, 
unnecessary and distracting noise is added to the diagram: A simple association 
between classes "c" and "c1" is represented by three distinct entities.  

Fig. 1, bottom left part, shows what the query looks like using a JPDD. JPDDs 
represent model queries in terms of user model entities and user model properties. 
Using user model entities and user model properties for query specification (rather 
than meta model entities and meta model properties) is to the advantage of feasibility 
and comprehensibility: Software developers work with abstraction means they are 
familiar with. They do not need to bother about meta models. Further, query models 
turn out to be concise and comprehensible: They specify a minimal pattern to which 
all ultimately selected model elements must comply.  

someUmlModel.contents 
->select(c: Class | 
 (c.name='cn' and  
  c.allAttributes->exists(att | att.name='an') ) 
or (c.name='cn' and not 
  c.allAttributes->exists(att | att.name='an') and
  c.oppositeAssociationEnds->exists(ae |  
  let c1 : Class = ae.participant in 
  c1.name='cn1' and  
  c1.allAttributes->exists(att | att.name='an') 
  ) ) ) 
 

(UML.Class, c) [name = "cn", feature =  
 { (UML.Attribute) [name="an"] } ] 
or  
(UML.Class, c) [name = "cn", feature =  
 { not (UML.Attribute) [name="an"] } ] and 
(UML.Class, c1) [name = "cn1", feature =  
 { (UML.Attribute) [name="an"] } ] and 
(UML.Association) [connection =  
 { (UML.AssociationEnd) [participant = c], 
 (UML.AssociationEnd) [participant = c1] } ] 
 

{or}

mda_query

 ?c
 ?att

<?c>cn

<?att>an
 Operations

 Attributes

<?c1>cn1

<?att>an
 Operations

 Attributes

<?c>cn

{not} <?att>an
 Operations

 Attributes

 

c: Class
name="cn"

att: Attribute
name="an"

{or}

AssociationEnd

AssociationEnd

Association

c: Class
name="cn"

c1: Class
name="cn1"

att: Attribute
name="an"

Attribute
name="an"

 

Fig. 1. Selection query expressed in OCL (top left part), using the textual and graphical 
notation presented in [20] (right part), and with help of a JPDD (bottom left part)  
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3   Background 

JPDDs originate in our work on AOSD. AOSD deals with the encapsulation of 
crosscutting concerns into separate modular units, called aspects. A crosscutting 
concern is a concern that cannot be cleanly decomposed to the primary decomposition 
of a program, thus leading to crosscutting code that is scattered throughout every 
module of the dominant decomposition. This is what became known as the Tyranny of 
the Dominant Decomposition [28]. An aspect encapsulates the crosscutting code of a 
crosscutting concern. Besides specifying the crosscutting code that should be injected 
into the primary decomposition, an aspect also specifies the conditions under which 
the injection shall take place.  

In order to do so, aspect-oriented programming techniques rely on the concepts of 
join points and weaving. Join points designate loci (in program code) or instants (in 
program execution) at which injection takes place. Weaving defines the exact manner 
in which injection takes place. Since crosscutting usually takes place at more than one 
join point (in fact, this is the major case that AOSD is focused on), aspect-oriented 
programming techniques provide various ways to specify selections of join points. 
For example, join point selection is possible based on lexical similarities of join point 
properties [14] [15] (e.g., of their name or type declarations), based on the structural 
arrangement the join points reside in [8] (such as the presence of particular parameters 
in an operation's parameter list, or the existence of a navigable path to a particular 
class), or based on the dynamic context join points occur in [15] (e.g., in the scope of 
a particular object, or in the control flow of a particular method).  

We see strong parallels between AOSD and MDA with respect to the selection of 
locations in software artifacts that are focus of modification. We estimate (e.g., from 
the examples given in [20]) that selection in MDA also depends on lexical similarities 
of model element properties – in particular, of their names. Further, structural 
arrangements, such as the existence of certain features or relationships, are deemed to 
play a major role in model element selection, as well. Structural constraints may also 
involve general statements on navigable paths, i.e., indirect associations or indirect 
generalizations between classifiers. 

In the following, we explain the graphical elements that we provide to specify 
model element selections based on lexical similarities and structural arrangements 
with JPDDs. We briefly sketch their general syntax, and detail their semantic 
implications using OCL expressions. 

4   Notation and Semantics 

A JPDD consists of at least one selection criterion, some of which delineate selection 
parameters. A JPDD represents a selection criterion itself and thus may be contained 
in another JPDD (e.g., for reuse of criteria specifications). JPDDs can be fully 
integrated into the UML, making use of UML's modeling means and its meta model: 
Structurally, JPDDs compare to UML templates of UML namespaces (cf. Fig. 2). 
Note, though, that semantically JPDDs differ from conventional UML templates since 
they render a "selection pattern" rather than a "generation pattern". This means in 
particular that the parameters of JPDDs represent logical variables (which return 
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values), while the parameters of a conventional UML template are fed with values. To 
emphasize this difference in meaning visually, parameters of JPDDs are summarized 
at the lower right corner of JPDDs – rather than at their upper right corner as with 
conventional UML templates (see Fig. 4 in section 5 for an example). 

In the following we present the core modeling means that may be used to specify 
selection queries with help of JPDDs. We explain their graphical notation, and 
describe how they can be evaluated using OCL meta operations1. Such meta 
operations are appended to UML's meta model classes (e.g., to classifiers, attributes, 
operations, associations, messages, etc.). Note that not all meta operations are shown 
due to space limitations. At last, we sketch how the meta operations are deployed in 
order to retrieve an actual set of matching model elements. 

4.1   Classifier Selection 

Looking at the selection semantics for classifiers, we may learn about the general 
selection mechanism for all model elements: Principally, model elements are selected 
based on the values of their meta attributes. In case of classifiers, these are the 
properties "isAbstract", "isLeaf", and "isRoot" (see Table 1, block II). 

Besides that, model elements are selected based on their meta relationships to 
composite model elements. In case of classifiers, for example, special regards must be 
given to the features they must possess in order to be selected (see Table 1, block III). 

At last, note that name matching of model elements is accomplished with help of 
name patterns (see Table 1, block I). Name patterns may contain wildcards, e.g. "*", 
in order to select groups of model elements based on lexical similarities. All element 
names in a JPDD represent name patterns by default. In case an element needs to be 
referenced within the JPDD (e.g., if it needs to be defined as a JPDD parameter), the 
element may be given an identifier2. In diagrams, identifiers are enclosed into angle 
brackets and are prepended by a question mark (see "<?C>Con*" in Table 1 for 
example, or "<?c>cn", "<?c1>cn1", and "<?att>an" in Fig. 1 of section 2). They are 
placed in front of the element they refer to. 
                                                           
1 We used OCL Checker, version 0.3 (http://www.klasse.nl/ocl/ocl-checker.html), to write the 

OCL statements, and OCLE, version 2.02 (http://lci.cs.ubbcluj.ro/ocle), to typecheck them. 
2 In that case, the name pattern is stored (technically) in a special tagged value. 

Namespace

Classifier Collaboration

ModelElement

namespace

ownedElement

template

templateParameter

Package

TemplateParameter

JPDD

SelectionCriterium

1..*
1..*

SelectionParameter

 

Fig. 2. Abstract syntax of JPDDs (top part) mapped to UML's meta model (bottom part) (cf.26) 
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Having explained these general selection principles, we concentrate on discussing 
the particularities of other modeling means in the following. 

Table 1. OCL meta operation for matching classifiers (left part), and a sample class pattern that 
could be passed as an argument (right part) 

context Classifier:: 
matchesClassifier(C : Classifier) : Boolean 
post: result =  -- I. evaluate name pattern 
if [...] -- given an identifier(see footnote 2) 
 self.matchesNamePattern(C.taggedValue->[...]) 
else  -- default 
 self.matchesNamePattern(C.name) 
endif 
    -- II. evaluate defined meta properties 
and (self.isRoot = C.isRoot or C.isRoot = '') 
and (self.isLeaf = C.isLeaf or C.isLeaf = '') 
and (self.isAbstract = C.isAbstract or C.isAbstract = '') 
    -- III. evaluate attributes and operations 
and (C.allAttributes->forAll(ATT | self.possessesMatchingAttribute(ATT))  
 or C.allAttributes->size() = 0) 
and (C.allOperations->forAll(OP | self.possessesMatchingOperation(OP)) 
 or C.allOperations->size() = 0) 

A sample class 
pattern, which is 
given an identifier 
(?C): 

 <?C>Con*

att2 : Integer [2!..100]

set*(val : * )
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

Operations

Attributes

name pattern

expected features

identifier

 
 

4.2   Operation Selection 

Special regards in operation selection must be given to the usage of wildcard ".." in 
the operation's signature pattern. Wildcard ".." provides for the selection of operations 
based on their structural arrangement – that is, based on the existence of particular 
parameters, while others are disregarded.  

Table 2 gives a detailed description on how such structural arrangements are 
evaluated by means of an OCL expression: Meta operation "matchesParameterList" 
compares (a) the overall order of parameters in the actual operation("self")'s 
parameter list to the one being passed from the JPDD (Table 2, block I), as well as (b) 
the partial order of parameters at the parameter lists' beginnings (Table 2, block II) 
and their ends (Table 2, block III). For that purpose, the meta operation defines a 
couple of sub-expressions: "ownPars" comprises all parameters of the actual 
operation ("self"); "patternPars" holds the parameters being passed from the JPDD, 
neglecting all wildcarded parameters ".."; and "matchingPars" is a subset of 
"ownPars", containing only those parameters that have a matching counterpart in 
"patternPars".  

The sub-expressions are used to compare the overall order of parameter lists with 
help of meta operation "matchesParameterOrder" (not shown here). That operation 
recursively iterates over "matchingPars" and "patternPars", verifying if (subsequences 
of) the former contains all the elements belonging to (subsequences of) the latter. The 
partial order is evaluated based on "ownPars" and the parameter list being passed 
from the JPDD. Order evaluation stops (i.e., is always true) when the first wildcarded 
parameter ".." is reached in the parameter list passed from the JPDD (see collect 
statement at end of block II and III). 
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Table 2. OCL meta operation for matching parameter lists (left part), and a sample signature 
pattern whose parameter list could be passed as an argument (right part) 

context Operation def: 
let ownPars : Sequence(Parameter) = self.parameter->asSequence() 
let patternPars(par : Sequence(Parameter)) : Sequence(Parameter) 
 = par->reject(p | p.name = '..') 
let matchingPars(par : Sequence(Parameter)) : Sequence(Parameter) 
 = ownPars->select(p |  
    patternPars(par)->exists(parp | p.matchesParameter(parp)) ) 
 
context Operation def: 
let matchesParameterList(par : Sequence(Parameter)) : Boolean  
post: result = -- I. compare parameter order 
 matchesParameterOrder(matchingPars(par), patternPars(par)) 
     -- II. compare first parameters  
and Sequence{1..ownPars->size()}->forAll(i : Integer | ownPars->at(i) 
   .matchesParameter(par->at(i))  
 or Sequence{1..par->size()}->collect(j : Integer | j <= i  
  and par->at(j).name = '..')->size() <> 0) 
     -- III. compare last parameters  
and Sequence{1..ownPars->size()}->forAll(i : Integer | ownPars->at( 
     ownPars->size() - i) 
   .matchesParameter(par->at(par->size() - i))  
 or Sequence{1..par->size()}->collect(j : Integer | j <= i  
  and par->at(par->size() - j).name = '..')->size() <> 0) 

A sample signature 
pattern (run), 
providing a sample 
parameter list 
({val1 : Integer, ..,  
  vali : Real, ..,  
  valn : String}): 

<?C>Con*

set*(val : * )
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

Operations

Attributes

signature patterns

name pattern  
 

Table 3. Sample relationship patterns for (indirect) relationships, which could be passed to a 
meta operation as an argument (meta operations are omitted here; see [26] for further details) 

C

B

[*]

indirect association    

C

B

A

association name

 

[*]

C

B

indirect generalization    

C

B  

4.3   Relationship Selection 

When selecting relationships, special regards must be given to indirect relationships. 
Indirect relationships are a sophisticated means to constrain structural arrangements: 
Indirect relationships may be used in JPDDs to indicate that a classifier does not need 
to be directly connected to a particular parent, child, or associated classifier. This 
means in case of associations, that the particular classifier must be reachable via the 
designated association, but does not need to be a direct neighbor.  

In diagrams, indirect relationships are rendered by a double-crossed line3. Table 3 
(left part) states, for example, that there must be a navigable path from class "C" to 
 
                                                           
3 Technically, indirect relationships are rendered by a special stereotype for associations or 

generalizations, respectively. Query evaluation is based on the (non-)presence of that 
stereotype (cf. [26]).  
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Table 4. OCL meta operation for matching association ends (left part), and a sample 
association end pattern that could be passed as an argument (right part) 

context AssociationEnd:: 
matchesAssociationEnd(ae : AssociationEnd) : Boolean 
post: result = [...]  
and ((if [...]  -- exact limit -- evaluate multiplicity 
  self.multiplicity.range.lower   = ae.multiplicity.range.lower  
 else   -- minimum bound 
   self.multiplicity.range.lower >= ae.multiplicity.range.lower  
 endif 
and  if [...]  -- exact limit 
  self.multiplicity.range.upper   = ae.multiplicity.range.upper  
 else   -- maximum bound 
  self.multiplicity.range.upper <= ae.multiplicity.range.upper  
 endif) 
or ae.multiplicity = '') 

A sample 
association pattern 
(A), comprising a 
sample association 
end pattern 
(aRole): 

exact multiplicity
restriction

C

B

A

2!..100

multiplicity
range restriction

aRole

 
 

class "B" for the selection criterion to be fulfilled. The ends of that path must match 
with the association ends of the indirect association. In case of indirect 
generalizations, the particular parent or child needs to reside somewhere in the 
inheritance tree, but does not need to be a direct parent or child. For example, class 
"C" in Table 3 (right part) must be among the ancestors of class "B", and class "B" 
must be among the descendants of class "C", for the selection criterion to be satisfied. 
The respective OCL meta operations are omitted here due to space limitations. Please 
refer to [26] for a detailed description. 

4.4   Multiplicity Restrictions 

Special attention in association end selection must be paid to the association end's 
multiplicity specification4: Multiplicity of an association end may declare exact upper 
and/or lower limits; or it may designate the upper and/or lower bounds which the 
multiplicity of an association end must not exceed or underrun (respectively). Being 
able to declare exact limits and/or minimal and maximal bounds provides for further 
flexibility in query specification based on structural arrangements.  

Graphically, exact multiplicity bounds are indicated by exclamation marks5. The 
lower multiplicity limit of association end "aRole" in Table 4, for example, denotes a 
strict limit. Accordingly, association ends are only selected, if their lower multiplicity 
limit equates "2". The upper multiplicity limit of "aRole", on the contrary, denotes a 
maximum. Association ends are selected as long as their upper multiplicity limit does 
not exceed "100". 

4.5   Message Selection 

Selection is not restrained to structural aspects of a UML model as they are specified 
in UML class diagrams, for example. Selection criteria may as well  involve behav-
                                                           
4 The same counts for the multiplicity specification of attributes (see sample classifier pattern in 

Table 1 for an example). 
5 Technically, fix upper and lower limits are specified as stereotypes of multiplicity ranges. 
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ioral requirements as they are specified in UML interaction and collaboration dia-
grams. Table 5 shows the notational means to specify selection criteria on messages, 
and how such criteria are evaluated by an OCL operation. 

Messages are selected based on the action they invoke (Table 5, block I). In case of 
operation call actions, signature patterns may be used to restrict the operation called. 
Further, messages are selected based on their senders and receivers (Table 5, block 
II). It is important to note that the OCL operation evaluates the senders' and receivers' 
base classifiers rather than their role specifications. This is accomplished deeming 
that selections should consider the full specification of classifiers rather than restricted 
projections thereof. The same counts for the associations used for transmitting the 
messages.  

Lastly, messages may be selected based on their activator message, their 
predecessor and successor messages, as well as based on the messages they are 
activating themselves (Table 5, block III and IV). This is particularly useful to 
constrain the (preceding) control flow in which selected messages may occur, as well 
as the (succeeding) control flow that selected messages may invoke. Message 
"someOp" in Table 5, for example, must be activated in the control flow of message 
"op1", and must in turn invoke message "op2".  

Table 5. OCL meta operation for matching (indirect) messages (left part), and a sample 
message pattern that could be used as an argument (right part) 

context Message:: 
matchesMessage(m : Message) : Boolean 
post: result = -- I. evaluate action 
self.action.matchesAction(m.action) 
    -- II. evaluate sender/receiver/... 
and self.sender.base->exists(C |  
 C.matchesRelationships(m.sender) and  
 C.matchesClassifier(m.sender)) 
and self.receiver.base->exists(C |  
 C.matchesRelationships(m.receiver) and  
 C.matchesClassifier(m.receiver)) 
and self.communicationConnection.base 
 .matchesAssociation(m.communicationConnection) 

A sample message 
pattern (someOp*), 
and an "indirect" 
message symbol: 

someOp*(..)
op1()

C B

activating control flow

signature pattern

activated control flow

op2()

 
    -- III. evaluate activator 
and ((if m.activator.stereotype->exists(st | st.name='indirect') then 
 self.activator.matchesReceptionContext(m.activator) and 
 self.allActivators->exists(M | M.matchesSendingContext(m.activator)) 
 else 
  self.activator.matches(m.activator) 
 endif) or m.activator='') 
    -- IV. evaluate predecessors/successors/... 
and (m.predecessor->forAll(p | 
 if p.stereotype->exists(st | st.name='indirect') then 
  self.predecessor->exists(P |  
   P.matchesSendingContext(p) and 
   P.allActivatedMessages->including(P)->exists(M |  
    M.matchesReceptionContext(p)) ) 
 else 
  self.predecessor->exists(P | P.matches(p)) 
 endif ) or m.predecessor->size()=0) 
and (m.successor->forAll([...]) or m.successor->size()=0)  -- analogously 
and (m.activated->forAll([...]) or m.activated->size()=0)  -- analogously 

 
C

[...]

arbitrary control flow  
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Messages of special stereotype "indirect" can be used to indicate arbitrary control 
flow that may occur between two successive messages. In diagrams, indirect 
messages are depicted as double-crossed arrows. Technically, indirect relationships 
are rendered as special message stereotypes. The presence of that stereotype is 
checked during query evaluation (see Table 5, block III and IV, for illustration). 
Evaluation of indirect messages is accomplished in two steps: One step is concerned 
with finding messages that comply to the sending context of the indirect message (i.e. 
sender role, predecessors, successors, and activator messages); the other step deals 
with the identification of messages matching to the reception context of the indirect 
message (i.e. receiver role and subsequently activated messages).  

4.6   Combination of Selection Criteria 

By default, all selection criteria specified in a JPDD are implicitly combined with 
"and". That is, all such selection criteria must be fulfilled by a given model element in 
order to be selected by the query. In some cases, though, we may need to specify 
alternative, exclusive, or mutual exclusive selection criteria. In order to render such 
combinations of selection criteria, we may use constraint strings ("{or}", "{xor}", and 
"{not}"). The corresponding OCL operations specify that either at least, or exactly, 
one (respectively) of all model elements interrelated by such a constraint must comply 
to the selection criteria; or it inverts the result of matching in case the model element 
is constrained with "{not}". The OCL operations are omitted here due to space 
limitations. Please refer to [24] for further illustrations. 

4.7   Retrieving Matching Model Elements 

Retrieval of actual model elements from user models is accomplished using the UML 
meta model operations as they have been exemplified in the previous sections. A 
corresponding meta operation is specified for each UML meta model element (whose 
instances may appear in class/object diagrams or in interaction diagrams, e.g. 
classifiers, attributes, operations, associations, messages, etc.). In order to retrieve a 
set of (matching) model elements, the meta operation successively invoke one another 
so that all selection criteria specified in the JPDD are evaluated (see Fig. 3). The meta 
operations take a model element pattern from the JPDD as argument, and compare its 
characteristics with an actual model element instance of a user model. Starting point 
of evaluation is a return parameter of the JPDD. For each return parameter of a JPDD, 
a set of matching elements in the given user model is retrieved.  

Fig. 3 exemplifies how the OCL meta operations work together in order to retrieve 
a set of matching model elements for a classifier pattern ("?cPattern"). The selection 
is initiated by a special meta operation "matchingModelElements", which is defined 
in the context of the JPDD parameter and that returns the set of all model elements 
matching to that parameter (i.e. to classifier pattern "?cPattern"; see  in Fig. 3). The 
meta operation takes a UML model (or any other namespace, such as packages, col- 
laborations, etc.) as an argument. The contents of that model (or namespace) are then 
matched against the selection criteria outlined by the JPDD parameter (i.e. by classi- 
fier pattern "?cPattern"), one by one (see  in Fig. 3). The model elements contained  
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someJPDD

 ?cPattern

<?cPattern>...

someModel

A
B

C
D

E

Flet cPattern = self.templateParameter in
context TemplateParameter::
matchingModelElements(someModel : Namespace) : Set(ModelElement)

someModel.allContents->select(everyModelElement | oclIsKindOf(Classifier) and ...

possessesMatchingAttribute
(∀ cPattern.attPatterns)

possessesMatchingOperation
(∀ cPattern.opPatterns)

possessesMatchingAssociation
(∀ cPattern.assocPatterns)

possessesMatchingParent
(∀ cPattern.parentPatterns)

matchesAssociationEnd
(∀ assocPattern.assocEndPatterns)

matchesClassifier
(parentPattern) and
matchesRelationships
(parentPattern)

matchesClassifier
(assocEndPattern.participantPattern) and
matchesRelationships
(assocEndPattern.participantPattern)

matchesParameterList
(opPattern.parlistPattern)

[...]

matchesClassifier(cPattern) matchesRelationships(cPattern)

matchesParameter
(∀ parlistPattern.parPatterns)

--(every attribute)
matchesAttribute
(attPattern)

post: result =

… and --(that) … and --(that)

… and --(that) … and --(that)

… and --(that)… and --(that)

… and

… and --(every operation) … and --(every assocation)

… and --(every parent)

… and --(every parameter) … and --(every participant)

 

Fig. 3. Cascading evaluation of JPDDs (note that not all evaluation steps are shown) 

in the model are selected if their meta attributes (in this case, "isAbstract", "isLeaf", 
"isRoot", etc.) as well as their meta relationships (to other model elements, such as 
attributes, operations, associations, and generalizations, etc.) comply to the ones 
defined by classifier pattern "?cPattern" (cf. also section 4.1). This is checked with 
help of operations "matchesClassifier" and "matchesRelationships" (see  in Fig. 3), 
which in turn make use of operations "possessesMatchingAttribute", "possesses 
MatchingOperation", "possessesMatchingAssociation", and "possessesMatching 
Parent" (see  in Fig. 3) – and so forth. It is important to note that relationship 
matching also involves matching the participating classifiers (see  in Fig. 3)6. That 
way, evaluation cascades from selection criterion to selection criterion, assessing if all 
selection criteria in the JPDD are fulfilled. 

5   Example 

With help of the notational means presented in the previous section, we now can 
define even complex selection queries without getting lost in its specification. 
                                                           
6 Likewise, attribute and operation matching involves matching of their type and parameter 

types, respectively (not shown in Fig. 3).  
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sample_model_query

 ?C
 ?Application
 ?someMsg

1!
Database

<?C>Con*

{not} att1 : String
att2 : Integer [2!..100]

set* (val : * )
put*(par : * )
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

 Operations

 Attributes
<?Application>*

att1 : String

<?someOp>do* (..)

 Operations

 Attributes

{xor}

Collection Array

[*] [*] {not}

[*]

run(..)

<?Application>* <?C>Con*

*[*]

<?someMsg> :
<?someOp>do* (..)

*

 

Fig. 4. A sample JPDD 

Fig. 4, for example, depicts a sample JPDD that selects all classifiers (identified 
with "?C") (1) matching the name pattern "Con*"; (2) that do not have an attribute 
matching "att1" of type "String"; (3) that do have an array attribute matching "att2" of 
type "Integer" whose lower bound equates "2", and whose upper bound does not 
exceed "100"; (4) that either have an operation matching "set*", or an operation 
matching "put*" (but not both) that both take one parameter of arbitrary type; (5) that 
have an operation matching "get*" that returns an value of arbitrary type; (6) that 
have an operation matching "run" that takes (at least) three parameters: (6a) the first 
parameter in the operation's parameter list must be of type "Integer", (6b) the last 
parameter must be of type "String"; (6c) besides that, the operation must take a third 
parameter of type "Real" (no matter at which position in the operation's parameter 
list). Selected classifiers must be (7) subtypes of "Collection"; (8) but not subtypes of 
"Array"; and (9) they have to have an association to exactly one classifier matching 
"Database". 

Furthermore, selected classifiers must possess an indirect association (i.e., a 
navigable path) to a classifier (identified with "?Application") (1) matching "*"; (2) 
that has an attribute matching "att1" of type "String"; (3) and that has an operation 
matching "do*" (identified with "?someOp"), which takes any number of 
parameters. That operation must be invoked by some message (identified with 
"?someMsg"7) (3a) which in turn invokes method "run" on the former classifier 
(identified with "?C") – (3b) no matter when (see "iterating" double-crossed 
message in right part of Fig. 4) – and (3c) using arbitrary values as parameters. 
While the left part of Fig. 4 is matched against classifiers in class diagrams, the 
right part is compared to message specifications in interaction diagrams in which 
matching classifiers are involved.  

Having found actual model elements that comply to these selection criteria, the 
JPDD returns the resulting model elements via its template parameters "?C", 
"?Application", and "?someMsg".  
                                                           
7 Note how the identifier of the message is separated from the identifier of the operation (which 

is being called) by means of a colon. 
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6   Related Work 

MDA is closely related to the research field of graph transformations [21]. In both 
domains, we are concerned with the specification of model (or graph) transformations 
and – consequently – with the specification of model (or graph) queries. From that 
perspective, JPDDs compare to the left-hand side (LHS) of production rules as we 
find them in graph rewrite systems such as PROGRES [23] or AGG [27]. JPDDs 
differ from LHS specified in PROGRES in their way to specify constraints on 
(class/object) node attributes. In PROGRES, such constraints are either specified 
using textual descriptions, or they are attached to the (class/object) node which they 
apply to by means of a hollow fat arrow. Both representations differ considerably 
from the class/object notation as it is known from the UML. AGG does a better job in 
that respect, since attributes are listed within a special attribute compartment inside 
the node. On the other hand, though, AGG does not provide for the specification of 
paths (e.g., indirect associations) between (class/object) nodes – such as PROGRES 
and JPDDs do. The specification means of path expressions in PROGRES go beyond 
those of JPDDs: PROGRES gives developers fine-grained control over the evaluation 
process of path expressions (by providing conditional and iterative path expressions). 
Furthermore, it permits the specification of optional nodes. Selection criteria specified 
in JPDDs, on the contrary, must be satisfied as a whole; and their evaluation process 
is invariable as determined by the OCL statements presented in this paper8. 

Apart from the transformation approaches originating in the field of graph trans-
formations, there are a couple of notations around that are explicitly dedicated to the 
field of MDA, e.g., the QVT approach presented in [20], or MOLA [10]. The major 
problem with these transformation languages is that they specify model queries in 
terms of meta model entities. While this may be more convenient when referring to 
meta properties that have a standard representation in UML diagrams, it severely 
hinders the overall comprehension of the queries. Apart form that, JPDDs facilitate 
the reuse of model queries since they consider model queries as first-class entities9 
which may be involved in multiple transformations.  

Considering that most submissions to OMG's QVT RFP propose to use OCL as a 
query language, JPDDs also relate to existing approaches for the visualization of OCL 
expressions in general, such as Constraint Diagrams [11] or Visual OCL [4] [12]. 
Constraint Diagrams represent a graphical notation to specify invariants on objects 
and their associations (i.e., links) depending on the state they are in. In consequence 
to its strict focus on runtime constraints, the notation does not provide for the 
specification of model element queries, though. In particular, no means are provided 
to designate model elements that serve as sources for transformations. Further, the 
notation is not concerned with the specification of structural selection constraints, 
such as existence of particular features. Visual OCL is a graphical notation to express 
OCL constraints. It provides graphical symbols for all OCL keywords, in particular 
for the "select" statement as we need it for model element selection in MDA. 
                                                           
8 Note that we abstract from evaluation problems of OCL expressions, such as the calculation 

of transitive closures (cf. [22]), for example. We consider these problems to be OCL-specific 
rather than JPDD-specific. 

9 i.e., as an autonomous entity that can exist without further reference to any other entities. 
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However, similar to the MDA transformation approaches mentioned above, Visual 
OCL does not provide for the specification of model element queries in terms of user 
model entities. In consequence, users are confronted with the full load of OCL 
complexity – in particular when specification of indirect relationships (see section 4.3) 
is necessary. 

The idea of specifying queries in terms of user model entities we borrowed from 
the approach of Query-By-Example (QBE) [30], which is a common query technique 
in the database domain: We specify sample model entities, having sample properties, 
and determine how selected model elements must relate to such samples. We make 
use of "operator" symbols (such as wildcards, exclamation marks, and double-crossed 
lines and arrows) to differentiate whether selected model elements must match the 
samples exactly, or with a permissible degree of deviation (e.g., names may be 
rendered with help of patterns, and/or multiplicity boundaries may be specified to 
denote minimum and maximum values rather than perfect matches). 

As already mentioned above and discussed in [26], AOSD is another application 
area for JPDDs. Here, JPDD are used to visualize selections of join points, i.e., they 
render those points in program code, or program execution, that are to be enhanced by 
an aspect. In [25], we demonstrate by example how JPDDs may be used to model join 
point selections in popular aspect-oriented programming languages. In particular, we 
describe how JPDDs may be used to represent pointcuts in AspectJ [2], traversal 
strategies in Adaptive Programming [13], or concern mappings in Hyper/J [29].  

7   Conclusion 

In this paper, we presented a graphical notation to specify model queries on UML 
models. We identified model queries to be prerequisites to model transformations as 
they are specified in the Model-Driven Architecture (MDA). We demonstrated that 
even simple query specifications tend to become excessive and complex when using a 
textual notation. Aiming to overcome this quandary, we introduced Join Point 
Designation Diagrams (JPDD) to specify and represent model queries graphically. We 
explained their abstract syntax, as well as the graphical means to specify the queries' 
selection criteria. We specified OCL operations for the evaluation of such selection 
criteria on actual user model elements. We exemplified the use of JPDDs using a 
complex model query, demonstrating that even then the query specification remains 
comprehensible.  

The particular focus of this work has been on providing graphical means for the 
specification of model element queries based on lexical similarity (e.g., based on 
name and signature patterns) and structural arrangements (e.g., based on indirect 
relationships). We extrapolated the need of such selection means from the area of 
Aspect-Oriented Software Development (AOSD), where JPDDs were originally 
developed for. We think that mapping our graphical means to OCL expressions can 
assist developers in both AOSD and MDA when specifying and modeling selections. 
In particular, this allows seamless integration of our JPDDs with various submissions 
to the MOF QVT RFP, which are proposing to use OCL as a model query language. It 
is important to note, though, that JPDDs are not capable – and not intended – to 
represent OCL expressions in the general case. Further, it must be stated that JPDDs 
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may specify only selections on model elements of a kind. It is not possible, for 
example, to collectively select UML model elements of different types into the same 
parameter (e.g., classes and associations, or all model elements contained in a model). 
Instead, a parameter must be defined for each model element type to be selected.  

We think, however, that this limitation is more than outranged by the benefits of 
specifying model queries in terms of user models, rather than meta models, in order to 
facilitate their specification and comprehension to the user. In this paper, we have 
concentrated on a query language for the UML. We advocate for the development of 
further user model-based query languages in other modeling and domain-specific 
languages as well. That way, transformations may be specified as simple as relating 
one user-model-based query to another user-model-based query – for the sake of 
feasibility and comprehensibility to the user. 
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Abstract. The software model development process consists of a number of
complex transformations. Especially horizontal model transformations that are
used to restructure and re-organize software models require a lot of handiwork,
since complex analysis and transformation steps have to be performed. The de-
veloper should be assisted by a tool set that supports horizontal as well as ver-
tical model transformations in order to improve software quality and to reduce
software development costs. This paper presents GREAT, a rule-based transfor-
mation framework which facilitates transformations among models on the same
or different abstraction levels. The feasibility of GREAT is shown by rule-based
implementations of model restructuring, refactoring, and optimization algorithms
that can be used throughout the development process to improve the architecture
of software models.

1 Introduction

The Model Driven Architecture (MDA) approach of the OMG aims at the automati-
zation of the software development process. It defines a range of abstraction levels for
software models and transformations, that translate models between different levels of
abstraction. Vertical model transformations affect the abstraction level of a software
specification. They are used to refine or to abstract a model during forward or reverse
engineering, respectively. Horizontal transformations however, do not affect the ab-
straction level of a software model. They are used to restructure, complete, or optimize
a software model in order to improve its internal structure and/or quality. In contrast to
vertical transformations, which are the main focus for research and tool development
in this area, horizontal transformations have only limited support. Horizontal transfor-
mations are often confined to the source code level of a system [1] and/or implemented
internally [2], which restricts adaptation and extension. In order to automate the overall
software development process, a model transformation system must be able to support
both vertical and horizontal model transformations. Also, the developer must be able
to create, extend and adapt transformation algorithms. This paper presents GREAT1

[3], a rule-based transformation framework, which facilitates transformations among
models on the same or different abstraction levels, i.e., horizontal or vertical transfor-
mations. Depending on the given set of transformation rules, GREAT can be used to

1 German “Graphorientiertes Entwurfsanalyse und Transformationswerkzeug”, English trans-
lation “Graph-oriented tool for design-analysis and transformation.”

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 93–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



94 A. Christoph

automate complex model transformation tasks, such as model analysis, refactorings, or
design pattern application. The applicability of GREAT is demonstrated with rule-based
implementations of refactoring and optimization algorithms that can be applied to ar-
bitrary software models. The next section presents an overview of GREAT. Section 3
introduces transformation rules that are used to analyse software models to support
further transformations. Section 4 presents rule-based implementations of architecture
refactorings for software models. Section 5 shows the implementation of an restruc-
turing algorithm that produces an optimal inheritance hierarchy for a set of classes.
Conclusions and related work are discussed in sections 7 and 6.

2 GREAT: A Model Transformation Framework

The GREAT model transformation framework facilitates UML model-to-model trans-
formations, focusing on UML class-diagrams. GREAT is designed to ease and automate
different software engineering tasks, such as refactoring and refinement; tasks that are
currently part of the MDA process [4,5].

2.1 System Architecture

Figure 1 shows the structure of the framework.

Fig. 1. The GREAT transformation framework

GREAT has three sources of input.

– The Software models are either UML models, which are assumed to be represented
in XMI [6] or MDL2, or Applications, which are assumed to be available in Java
byte code. The usage of XMI or MDL allows the integration of GREAT into an
existing tool chain, whereas byte-codes can be used for maintenance and reengi-
neering tasks [7].

– The model transformation rules. These graph transformation rules are processed by
OPTIMIX [8] which generates the appropriate Java-code. The Java output is used
by GREAT’s execution engine.

2 Proprietary file format of Rational Rose.
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– The flow control, which provides the order in which different rule sets have to be
applied.

The central part of GREAT is the implementation of the UML meta-model [9]. The
model manipulation interface (MMI) provides methods for accessing and manipulating
UML models. The execution engine is responsible for loading and executing the graph
transformation code generated by OPTIMIX. The GREAT framework is completely
implemented in Java.

2.2 Transformation Method

GREAT uses a declarative transformation approach. The specification of a model trans-
formation consists of a set of transformation rules together with a flow control descrip-
tion. The rules are translated into executable transformation code by the graph rewrite
system OPTIMIX. The transformation code is executed in the context of the meta-
model implementation of GREAT.

Graph Model
A software model can be defined as a set of graphs G = (N, E) with nodes N and edges
E. In the context of UML, graph nodes are of type {Class, Interface, Attribute,
Method, Unit}. Edges represent mappings (also: relations) between nodes. Relations
are of type {Generalization, Implementation, Association, Dependency,
Parent}.

Nodes and egdes contain additional information to further specify their semantics,
e.g. name, stereotype, visibility, etc. Element names must be unique with respect to the
context of the element. The relations Generalization, Implementation, and Parent
are unique between two nodes A and B by definition, whereas Association and De-
pendency edges must have a unique name.

Transformation Language
Basically, transformation rules consist of two sets of predicates over the GREAT meta-
model (see figure 2). The first set (above the ==> delimiter) describes a pattern to be

Fig. 2. Example transformation rule
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matched in the software model. The pattern is a conjunction of predicates over the
graph model. The second set describes the structure of the matched section, when the
manipulation is finished. OPTIMIX is used to generate the navigation and manipula-
tion code from these rule specifications. This code relies on the model manipulation
interface (MMI) of GREAT. The generated code is stored in a rule repository. The
GREAT execution engine loads and executes the generated rule code according to the
flow control specification. Figure 2 shows a transformation rule that identifies three
classes connected through stereotyped dependency edges3. The rule creates a new class
and connects it via a generalization edge with one of the pattern classes, i.e., it cre-
ates a new base class for the pattern class. The left-hand side of the figure shows the
textual representation of the rule. The right-hand side shows a graphical (UML-like)
representation. In order to ease understanding, the graphical representation will be used
throughout the paper.

3 Model Analysis

In order to implement complex transformation algorithms, model analysis can be used
to externalize implicit knowledge contained in model elements and/or relations. This
helps to keep model transformations simple and to achieve reuse of transformation steps
in the sense of modularization. This section presents transformations that implement
relational operations, e.g., transitive closure, to analyze element relationships. These
operations are also used to support element analysis. Analysis results are either stored
as dedicated model elements or as tagged values of existing model elements.

3.1 Analyzing Relations

Transitive Subgraph
Transitive closures can be used to analyse the subgraph spanned by a transitive relation
R. The following rules generate a transitive closure over the generalization relation of
a software model. Transitive edges are instantiated as dependency edges, stereotyped
with <<tc>>.

Rule 3.1(a) produces an initial state in the model by creating transitive edges par-
allel to generalization edges. Rule 3.1(b) iteratively extends the transitive closure by
including next neighbour nodes.

Rule 3.1: Creating a transitive closure
3 Dependency edges serve as templates for user-defined relations.
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The resulting transitive closure of the sample model is shown in model 3.1 (dotted
edges, <<tc>> omitted).

Relation Intersection
For a number of transformations it is necessary to know the set of common members
of a relation R, i.e., nodes that are contained in different branches of R. The following
rules identify common base classes of a given set Sub of classes iteratively.

Rule 3.2(a) generates the set of all base classes of classes in Sub. The elements of
Sub are marked with the stereotype <<Leaf>>. The (potential) base classes are marked
with <<BT>>.

Rule 3.2: Finding common base classes

Let Base be the set of potential base classes. Rule 3.2(b) identifies counter-
examples, i.e., tuples of classes (A, B) with A ∈ Sub, B ∈ Base, not connected
through a generalization edge. The rule removes B from Base, i.e., it removes its
stereotype.

In the sample model, the rules identify class Base as a common base class of Sub =
{Member, Relationship}.

Model 3.1: Common base class of {Member, Relationship}

Shortest Edge
Once we know the set of base classes Base of classes in Sub, we might be interested
in a subset Base′ ⊆ Base, that contains the nearest base classes of Sub. For this
purpose, we define the distance between (A, B), A ∈ Sub, B ∈ Base as the number
of generalization edges between A and B.
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Rule 3.3(a) identifies tuples (A, B, C), A ∈ Sub, B, C ∈ Base and adds a mark
to the shorter transitive edge. An edge can have multiple marks. Edges with a higher
number of marks are shorter than edges with a lower number of marks.

Rule 3.3(b) pairwise compares transitive edges and removes a class from Base that
is connected to the edge with the lower number of marks.

In the example, Entity is the nearest common base class for Sub = {Metaclass,
Relationship}.

3.2 Analyzing Model Elements

Feature classes are supporting model elements that are used to construct defining or
containing class sets for operations and attributes.

Rule 3.4(a) creates a feature class for every operation defined in a software model.
The classes are marked with <<feature class>>. Classes defining the operation are
connected via a Defines relation. This simple rule compares operation names only.

Rule 3.4(b) creates a Contains edge between class A and a feature class C, if
the base class B of A defines the operation. The rule uses the transitive closure of the
generalization relation to calculate the Contains relation.

In the sample model, the rules yield the following result for the operation
taggedValue.

Rule 3.3: Nearest common base class

Rule 3.4: Defines and Contains relations
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Model 3.2: Defines and Contains relations of taggedValue

4 Architecture Refactoring

In [10], Fowler describes a number of architectural refactorings that help to improve the
internal structure of a software model. This section presents rule-based implementations
of selected refactorings.

4.1 Extract Superclass

Extract Superclass identifies common features of a set of classes and moves them into
a common base class. The goal of this transformation is to avoid repeated feature
definitions.

Rule 4.1: Extract Superclass: initial rule (a), iteration rule (b), final transformation (c)
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Rule 4.1(a) uses feature classes to identify features that are defined by at least two
classes. For matching classes, the rule creates a common base class. Rule 4.1(b) itera-
tively connects all the remaining classes defining the common feature to the common
base class. A supporting <<base type>> edge connects the feature class with the new
base class. Finally, rule 4.1(c) moves the common feature into the base class and re-
moves its definition from the subclasses. It uses the <<base type>> relation created
by rule 4.1(a).

4.2 Pull Up Feature

Pull Up Feature is a variant of Extract Superclass. It uses analysis rules presented in
section 3.1 to identify an already existing common base class. In this case, the rules do
not create a new base class for the common feature.

Rules 4.2(a) and (b) identify classes containing a common feature. The classes are
stereotyped with <<Leaf>>. Rules 3.2(a) and (b) can then be used to find and stereotype
a common base class of the set of classes stereotyped with <<BT>>. Rule 4.2(c) moves
the common feature to the base class of the class set.

Rule 4.2: Pull Up Feature: initial rule (a), iterative rule (b), final transformation (c)

4.3 Extract Interface

Extract Interface creates an interface for a class, containg a subset of the class’ methods.
This is useful when client access must be restricted to a certain subset of methods, e.g.
to avoid subclasses of clients to access other parts of the subject.

Rule 4.3(a) creates an interface for a class containg methods stereotyped as
<<facade>>. The interface is equipped with these methods and connected to the class
via an implementation edge. Rule 4.3(b) uses call edges to identify direct clients of the
class that use the extracted methods. Associations between the clients and the class are
redirected to the interface.



Describing Horizontal Model Transformations 101

Rule 4.3: Extracting an interface: creating the interface (a), redirecting client associa-
tions (b)

5 Architecture Optimization

In [11], Snelting describes an algorithm that optimizes the inheritance tree for a set of
classes4. The algorithm starts with a number of marked classes, that form the interface
of a system or a module. The algorithm distributes class features so that every subset of
features is localized in an internal class and multiple feature definition is avoided. This
section shows a rule-based implementation of the algorithm.

The algorithm consists of the following steps.

– Model analysis is used to collect class features. Here we can use the analysis rules
presented in section 3.

– After Defines and Contains relations have been calculated, containment classes
are created in order to capture sets of classes with equal feature sets.

– Inheritance relations can be introduced with respect to subset relationships of the
class sets described by containment classes.

– The last step of the transformation removes all intermediate and supporting classes
and graph nodes.

Model 5.1: Example model for the IHI algorithm

4 IHI: Inferring an optimal inheritance hierarchy.
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Example Model
The algorithm assumes that the interface classes of the input model are stereotyped as
<<INTF>>. These classes must be preserved during transformation. Model 5.1 shows
an example.

Model Analysis
This step creates Defines and Contains relations for the interface classes. Here, we
can use analysis rules from section 3. Model 5.2 shows the result of this step5.

Model 5.2: Defines and Contains relations

Rule 5.1: Creating containment classes: creating containment classes (a), building class
sets (b), merging identical sets (c)

5 Class 1 and Class 2 were omitted due to clarity.
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Containment Sets
For every feature class, rule 5.1(a) creates a supporting class that describe sets of classes
containing this feature. This is necessary to allow for set operations. Rule 5.1(b) builds
the set of all target classes of the Contains relation and stores it as a set of class
identifiers in a tagged value of the respective containment class. Rule 5.1(c) merges
identical containment sets.

Creating Inheritance
Two containment classes A and B can be connected via a generalization edge, iff A ⊂
B. Rule 5.2 finds such containment classes and connects them via a generalization edge.

Rule 5.2: Creating generalization edges

Model 5.3 shows generalization edges between definition nodes Def_m3 and
Def_m4 (classes {Class 3, Class 4} and {Class 3, Class 4, Class 5}).

Model 5.3: Created generalization edges

Transitive generalization edges that appear because of the transitivity of the subset
relationship are removed by another rule. For every interface class, rule 5.3(a) iden-
tifies a possible base class with the required set of features. Rule 5.3(b) modifies the
generalization, if a base class with a lower number of features can be found.



104 A. Christoph

Model Clean-up
After all transformations have been performed, clean-up rules remove all unnecessary
classes and relationships. The rule is not shown here.

Model 5.4 shows the result of the algorithm. Every interface class inherits its fea-
tures from an internal base class. In addition, the hierarchy avoids multiple feature dec-
larations and reuses sets of features.

Rule 5.3: Finding base classes: initial rule (a), iterative rule (b)

Model 5.4: Result of the IHI algorithm

6 Related Work

A lot of ideas for this work have been inspired by Assmann’s work. He showed the
applicability of graph rewriting systems to areas such as program analysis and opti-
mization [12,8], and Aspect-Oriented Programming (AOP) [13].
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There are several related tools available, that can be used to modify software and
software specifications.

UMLAUT [14] is a design transformation framework which provides searching, re-
trieving and modification functionality. UMLAUT allows the developer to specify de-
sign transformations that are executed on an imported software model. Transformation
specifications are based on list operations, such as selection and filtering. UMLAUT
focuses on model transformations for verification and testing.

Recoder [15] is a meta-programming environment capable of transforming Java ap-
plications. Transformation programs operate on an abstract syntax tree of the imported
program using the iterator API provided by Recoder. Transformed programs can be ex-
ported to source files. An example is the ’obfuscation’ of programs, i.e. the renaming
of classes and variables in order to make reverse-engineered code harder to understand.

The need to automate software analysis and restructuring lead to the development
of several algorithms, that were mainly developed to support reverse-engineering of
imperative programs.

Lundberg and Löwe describe an approach for software architecture recovery for
object-oriented systems [16]. Their goal is to reconstruct a sound component model of
object-oriented applications. The authors use a modified version of dominance analysis
to analyse component boundaries.

The Object Management Group (OMG) plans to integrate query and transformation
facilities into the UML standard. Therefore, the OMG issued a Request for Proposals
(RFP) on queries, views and transformations for software specifications (QVT).

The submissions to the RFP can be split into two groups.

– Implementation-based proposals, [17,18,19] focus on the imperative description of
queries and transformations. They use languages like the UML Action Semantics,
list operations or path expressions to specify target elements and transformation
operations.

– Rule-based proposals, [20,21] use pattern specification languages to match and
transform model elements, but their submissions don’t clarify how transformations
are applied and executed and how critical issues like rule termination, rule and pat-
tern selection are dealt with.

7 Conclusions

The presented work shows the applicability of graph rewriting systems for software de-
sign transformations. Even complex transformation algorithms, like architecture refac-
torings and optimizations can be expressed through graph transformation rules in the
context of the UML metamodel.

Although the current implementation of GREAT is not optimal , the usage of GREAT
in practice will free the developer from error prone, tedious, and time consuming tasks,
such as model analysis and transformation.

Further work is required to improve the performance of transformation applications
and to enhance the usability of GREAT.

– Improve performance. Measurements showed that the generated navigation and
transformation code performed well together with the metamodel implementation
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[7]. The most time consuming task is the identification of the rule graph patterns.
The code generated by OPTIMIX uses a simple ”nested loop join” algorithm. The
performance of the transformation code could be improved using more efficient
join algorithms, which only requires a modification of the OPTIMIX code genera-
tor. Also, a more sophisticated metamodel implementation would help to speed up
transformations.

– Improve usability. Support for debugging and tracing transformation rules is neces-
sary in order to enhance the usability of GREAT for real-world software engineer-
ing work.

For further information please have a look at the GREAT web-site
http://www.the-great-system.org.
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Abstract. No generally accepted understanding on the characteristics
of MDA transformation mechanisms exists. Various approaches to sup-
port such transformations have been proposed. In this paper, we discuss
general requirements for MDA transformation mechanisms. We claim
that, above all else, transformation mechanisms should be open, i.e. clear,
transparent and user-guided. We propose a new concept, a transforma-
tional pattern, as a basis of an MDA transformation mechanism. We
exploit existing tool support for this concept and show a small example
of how it can be applied. Finally, we analyse the ability of the proposed
technique to fill the requirements.

1 Introduction

A clearly identified long-term trend in software engineering is the introduction of
higher and higher abstractions from which actual implementations are derived.
OMG’s Model-Driven Architecture (MDA) initiative [1] is a recent manifesta-
tion of this trend. A key idea in MDA is that system development should be
based on high-level, platform independent models (PIM) from which lower level
platform-specific models (PSM) and eventually implementations are derived with
the support of transformation tools.

Although the vision behind MDA is generally accepted, the required tool
technology is just taking its first steps. Some early tool support exists (e.g.,
ArcStyler [2]), but the underlying concepts and paradigms of the tools are far
from well understood, if even existing.

Obviously, there are many ways to specify and execute transformations from
one model to another. A straightforward approach to specify the transformations
in an executable form would be a script language with access to a model repos-
itory and appropriate navigation and query capabilities. Then, transformations
could be realized simply as scripts.

The real challenge of MDA transformation tool support is not in devising
the computational vehicle, but rather in the collaboration of the designer and
the tool. A simple black-box approach (e.g. a Python script) would hide the
relationship between the source and the target model from the designer, making
it very difficult to work with the result. If the path from a platform independent
model to executable implementation were completely automated, this would

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 108–122, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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not be a problem, but we argue that this is an unrealistic idea, at least in the
near future. Typically, the designer has to examine the result, understand it,
and apply further transformations or modifications on some parts of the result.
Thus, we propose that an MDA transformation tool should be open in the sense
that it allows the designer to be involved in the transformation process.

In this paper we will first discuss the required properties of an MDA trans-
formation mechanism in more detail. As a potential approach to satisfy these
requirements, we introduce the concept of a transformational pattern, which we
believe can serve as the basis of open MDA transformations. This concept is
an application of a generic pattern facility originally developed for supporting
framework specialization [3]. We demonstrate the use of this technique by show-
ing how a J2EE model can be generated from a platform-independent UML
model for a Web Services application. Based on this example, we briefly analyse
the extent to which this approach meets the requirements. Finally, we discuss
related work and the future directions of our work.

2 MDA Transformation Mechanics

We see the primary role of a transformation as documenting the relations be-
tween different models of the same system. With this added information ex-
pressed in computer readable form, the models can be kept synchronized and a
change in one model does not render all other models obsolete. This is absolutely
vital for MDA. The description of these relations, i.e. the record of transforma-
tion according to [4], contains unique information about the system, and should
therefore be considered a model itself.

Another important, although secondary, role is to support the designer in de-
riving one model from others, by alleviating the burden of at least the repetitious
and trivial tasks. In some very specialized cases, such as a specific product-line, it
might be possible to achieve fully automated transformations. However, it seems
overly optimistic to expect fire-and-forget solutions for all possible situations
any time soon. The intermediate, or derived, models do therefore contain more
information than just what is derived. They have value as original artefacts and
should not be considered as mere documentation.

In our view, transformation definitions are software artefacts. They are sub-
ject to evolution the same way design models or program files are. We expect,
for example, that a set of model transformations can be given for a product-
line platform to be used for the derivation of the designs for individual software
products. Such a set of transformations is an integral part of the product-line
and goes through changes and versions together with the other assets belong-
ing to the product-line. It is likely, in fact, that the transformation mechanisms
themselves need maintenance and evolve as the subject system does.

We raise openness as the most important property that is required of an
MDA transformation mechanism. The designer should participate in the trans-
formation process, guiding it with her decisions, rather than receive the results
of a black-box operation as an outsider. The mechanism itself should be trans-
parent, allowing the designer to follow how the models are being manipulated.
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The meaning of every step in the transformation process should be clear. When
using a clear and transparent machinery, the designer is better equipped to make
decisions affecting the transformation. She can be trusted to make an educated
choice between possible courses of action even during the transformation.

We argue that the open approach is safer, allowing the designer to understand
the resulting model and modify it, if needed. In the black-box case modification
of the result is risky, because the designer does not understand the purpose of
different parts of the result, and therefore cannot judge the relationship elements
in the target and source models. Note, that a part not dependent on the source
model can be altered without compromising the relationships between the mod-
els. In the absence of fully automated transformations, it would be unreasonable
to completely forbid modifications of the resulting model.

In some cases, where no single transformation process can be found for a cat-
egory of systems, it is still possible to find transformation principles that apply
to each of the systems. E.g. software products developed from the same product-
line, or systems belonging to a particular application domain, might form such
categories. The transformation mechanism should support customisable trans-
formations that contain the common principles and provide variation points for
customisation. Unlike with direct editing of the result, some customisation needs
are foreseen and built into the transformation.

It is possible that some part in the target model resulting from applying a
transformation is not considered acceptable for the particular application. In-
stead of trying to guess what changes in the source would lead to the desired
result, it should be possible to change the result directly and produce a source
model corresponding to the modified result. In cases where the source or tar-
get metamodel or the transformation itself loses information, bi-directionality
cannot be fully achieved. However, the transformation mechanisms themselves
should be unbiased as far as the direction of the transformation is concerned,
and not force or encourage the transformation definitions to be unidirectional.

If a modification breaks several transformation rules and there are several
ways to repair them, user-assisted repairing might be preferable to automatic
repairing actions. In both cases the elements impacted by the modification should
be traceable. In order to fix a problem, or to correct a mistake, it might be desir-
able to reverse the application of a transformation, effectively undoing it. This
might prove to be challenging in practise. Traceability and reversibility are exam-
ples where knowledge of the relations between models are needed. This implies,
that applying a transformation leaves a persistent record of transformation.

It should be possible to carry out the transformation one step at a time, rather
than as a batch. Incremental transformation process contributes to the fine-
grained management of the transformation, with a number of benefits. First, it
contributes to openness, supporting understanding in general: the process can be
better followed when divided into small pieces. Second, it allows for fine-grained
backtracking: if the process appears to be going in a wrong direction, individual
steps can be undone without losing the results produced so far. This is useful for
steps with variation points. Third, incremental processing supports fine-grained
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customisability: variation points can be attached to individual steps rather than
to the entire process. In this way variation points can be shown only when really
needed: if a variation becomes obsolete because of earlier choices, the variation
point need not be presented at all. Fourth, partial transformation processes
are supported, where sensible (but incomplete) target models are produced on
the basis of incomplete source models. This allows for partial evaluation of the
transformation when developing or maintaining the transformation itself.

A transformation process can consist of several single, well-focused trans-
formation steps. Therefore, mechanisms to compose configurations of individual
transformation operations are needed. In these configurations, dependences and
constraints between the individual operations should be supported, yielding to
a need for an actual transformation language. Such combinability enables and
promotes transformation reuse. There is also a need to relate different models
together in one transformation. For instance, to form a platform-specific model,
information from a platform-independent model as well as from specific platform
deployment and description models might be needed. Combining information
from different source models in a “concern-oriented” way would help the user to
better understand and manage the dependences among the models.

Since transformation definitions are software artefacts, they need to be main-
tained throughout their life cycle. Therefore, transformations should be main-
tainable, implying that a transformation is specified in a manner that allows easy
replacement of its parts. Customisability and combinability promote reuse and
therefore improve maintainability. Many properties, especially openness, make
transformations easier to understand, which helps in maintenance.

Documentation of the transformations is needed, so they can be understood
and applied. Documentation is also needed for maintenance. Therefore transfor-
mations need to have an illustrative presentation, e.g. a visual notation that can
be understood by the different parties involved. Since people comprehend exam-
ples better than rules or algorithms, it would be beneficial if examples could be
constructed out of definitions and vice versa. Some visual presentation is needed
for examples, too, and for visualizing mappings between models.

3 Transformational Patterns

In this work a pattern is an organized collection of software elements capturing
any concern that is relevant for some stakeholder of the system. To be able to
define a pattern independently of any particular system, a pattern is defined in
terms of element roles rather than concrete elements; a pattern instance is tied
to a particular context by binding its role instances to concrete elements. The
relationship between a pattern and its pattern instance can be viewed as that of
a model and its instance. Roles can then be seen as classes and role instances as
objects. In this paper, we simply use the term pattern when referring to pattern
instance, or role when referring to a role instance. The full term is only used
when there is a risk of misunderstanding.

A role has a role type, which determines the kind of system elements that
can be bound to the role’s instances; the set of all valid role types is called the
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domain of the pattern. For example, if the domain is UML, the role types are
the element types (metaclasses) of UML: there are class roles, operation roles,
association roles etc. In the following we assume that the domain is UML.

Each role may have a set of constraints. Constraints are conditions that
must be satisfied by the model element bound to a role’s instance. For exam-
ple, a constraint of a class role C may require that only a class stereotyped as
�Persistent� can be bound to an instance of C. Constraints may also refer to
other roles, e.g. a constraint on association role A may require that an associa-
tion bound to A’s instance must appear between classes bound to (instances of)
certain class roles C1 and C2. Note that such a constraint implies (perhaps indi-
rect) relationships between roles A and C1 as well as A and C2. Continuing with
the pattern-model analogy, these relationships can be though of as associations.

A completely bound pattern instance therefore poses constraints on the ele-
ments bound to the role instances. The constraints from the pattern have in effect
been joined with constraints in the domain model. For example, one of the UML
well-formedness rule states that an attribute of a class may not have the same
name as the class. The first pattern in the example above states that each class
bound to (an instance of) the role C must be stereotyped �Persistent�. Every
element in the UML model must now fulfil both these constraints (although,
the first still only applies to classes, and the second only to appropriately bound
classes). If a model modification violates a constraint, the model must be fixed
by adding, removing, or modifying elements until the constraint holds again.

In addition to constraints, default values can be specified for a role. For
example, a class role might be given "Breakfast" as the default name, and
false as the default value for the property isAbstract. If a role with default
values needs to be bound, a new element can be generated and bound to the
role. The default values do not need to be constants, and they can refer to other
roles. For instance, the default name for a class role KeyClass might be defined
as the name of the class role Class appended with "Key". In order to make use
of the default value, Class must of course be bound.

Exploiting the default values as a generative mechanism, a pattern can be
used in any context where a collection of elements needs to be generated based
on well-defined relationships between existing and the generated elements. This
is the situation when a PSM is generated based on a PIM according to cer-
tain well-defined transformation rules. In this context a pattern implements a
transformation rule or a set of transformation rules. We call such patterns trans-
formational patterns. Assuming tool-assisted binding and element generation,
patterns offer an attractive approach to realize MDA transformations.

A transformational pattern spans multiple domains. For example, consider a
transformation from UML to EJB. The set of valid elements for binding contains
all the elements from the UML and EJB models. The domain of the pattern
contains the metaclasses from the UML metamodel and the metaclasses from the
EJB metamodel. Role types include class role (UML), association role (UML),
data schema role (EJB), component role (EJB), etc. From the pattern’s point of
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Fig. 1. A transformational pattern as a function

view, there is a single model, comprised of the UML model and the EJB model,
side-by-side, but separate.

The purpose of the transformational pattern is to modify (a fragment of)
the combined model so that the constraints for the pattern’s roles hold for the
model elements. Of course, the constraints only need to hold for elements bound
to roles in the pattern. If the target model is empty, and all elements in the source
model are bound, the constraints can be satisfied by creating new elements in
the target model. If the default value cannot be computed, or does not exist, the
constraints cannot be satisfied automatically. In a case where there are bound
elements in both the source and the target model, constraint violating elements
must be modified, and new elements provided for unbound roles.

To put it in a bit more formal way, a transformational pattern can be seen as
a function that for a pattern instance computes the default values for unbound
role instances (output roles) from the values of the bound role instances (input
roles). One new element is created for each output role and the element is bound
to the role. It is important to note, that the division to input and output roles
does not necessarily reflect the division to source and target elements. It is
very much possible to compute some source and target elements based on a set
of existing source and target elements. Figure 1 illustrates a transformational
pattern function.

The specifications of default values of roles are called element templates.
For role r, this specification is denoted with function Elemr(Bound(r1), . . . ,
Bound(rk)), where r1, . . . , rk are the roles referenced in the element template
specification. Bound(ri) represents the element ei bound to role ri. The function
yields a new concrete element, assuming that the roles r1, . . . , rk have been
bound. Elemo needs to be evaluated for each output role o. This is possible, if
default values are specified and the references between the output roles imply a
partial order. For any sequence o1, . . . , on, where oi never depends on oj when
i < j, the elements for output roles can be computed with

Bound(o1) = Elemo1(Bound(r1,1), . . . , Bound(r1,k1)) = Elemo1(e1, . . . , ek1)
. . .
Bound(on) = Elemon(Bound(rn,1), ..., Bound(rn,kn)) .
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4 Tool Environment: MADE

MADE [5] is an integrated collection of tools for pattern-driven UML modelling.
Rational Rose [6], a UML modelling tool, is one of the key components, enabling
visualization and manual modification of models. We have used MADE as a
prototype tool environment for transformational patterns (explained in Sect. 3).
Although MADE has not been designed with transformations in mind, the under-
lying pattern concept is sufficiently generic to provide the required mechanisms
and user interface for applying transformational patterns in the UML domain.
MADE supports the specification of patterns, and the interactive binding of the
roles of a pattern to UML model elements residing in Rose.

A key functionality of the environment is, that it transforms a (possibly
partially bound) pattern into a task list. A task is generated for each unbound
role, but only if all the other roles it depends on are already bound. The designer
completes such a task by providing an element to bind to the role. Either the
designer points out an existing model element or she asks the tool to generate
a new element based on the default values for that role. She has full access to
the UML modelling tool, Rose, and can manually create an element, e.g. a class,
and then point that out to complete a task. The pattern specification can be
associated with informal instructions for binding the roles, which are shown to
the user when the corresponding task is to be performed.

MADE checks that role constraints are satisfied by bound elements. In the
case of constraint violations, new corrective tasks are created. In many cases the
tool can provide an option to correct the model automatically. Because binding
information is preserved even after applying the pattern has been completed,
any constraint violating changes to the model can be detected. For example, free
model editing actions in Rose can cause corrective tasks. Persistent bindings also
save from having to re-apply patterns when the model is changed.

The tool also maintains a list of pattern instances. Patterns with constraint
violations or unbound roles are indicated with a red marker. When the designer
selects a pattern, only tasks related to that pattern are displayed. This helps the
user keep focused and not get distracted by concerns irrelevant to her goal. For
the same reason, tasks that can not be performed at the moment are not shown.

For use with transformational patterns, the central functionality of the tool
environment is the incremental, task-driven binding process, combined with the
generation of default elements. This allows for stepwise performing of a trans-
formation, keeping the designer aware and in control of each step. The designer
can customize the transformation process by following different task paths. Fur-
ther, a pattern stores the information about the transformation, so that it can
be later retrieved and used for various purposes (e.g. tracing, comprehension,
visualization). Some parts of the transformation can be easily redone later, as
long as the constraints defined by the pattern still hold after the changes.

The MADE environment is still in the prototype stage, and there are short-
comings in some areas. For example, pattern combining is still under develop-
ment, and currently only allows static combining. A groups of patterns can be
composed and then applied instead of a single pattern. However, patterns cannot
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be added to a group dynamically, for example, based on properties of the model
or user decisions. Also, the tool provides no real visual notation for pattern def-
initions or for (partially or completely) bound pattern instances. It is possible
to highlight elements bound to a specified pattern instance, but that does not
show which element corresponds to which role in the pattern.

MADE has not been designed explicitly for transformational patterns. Rela-
tions between pattern roles are modelled as dependencies instead of associations,
and are thus directed. This is not a problem with design patterns, but it does
make transformational patterns unidirectional in practice. The lack of associa-
tions also makes it impossible to navigate from a role directly to a related role
with OCL. Navigation is performed by referring to the role by its name.

5 Applying Transformational Patterns in MDA: An EJB
Example

The example is a transformation of a UML model (PIM) (Fig. 2) to an EJB
model (PSM). Starting with a set of informal, natural language transformation
rules we form transformational patterns, which are entered into the MADE tool.
The patterns are then applied to the source model to produce the target model.

The UML model and the set of transformation rules were adapted from
an example by Kleppe et al. [7]. The model describes a small business, Rosa’s
Breakfast Service, and consists of 7 classes and 5 associations. The structure of
the PIM is presented in the class diagram in Fig. 2, but most attributes have been
omitted to keep the diagram small. The transformation rules (in Fig. 3) have
been re-worded, but should still express the idea of the original ones. Although
the example is rather small, it does require roughly 40 separate invocations of
the rules listed. It is therefore suitable for demonstrating our approach.

Some of the rules refer to a root class. In this context it means the root of
the hierarchy implied by composite-associations between classes. For example,
in Fig. 2, the root class of Breakfast is BreakfastOrder, and the root class of
Customer is Customer itself. An EJB data schema (or an EJB component) cor-

Fig. 2. PIM of Rosa’s Breakfast Service (adapted from [7, Fig. 4-2, p.48])
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1. (a) For each PIM class, an EJB key class is generated.
(b) For each PIM association class, an EJB key class is generated.

2. For each root class, an EJB component and an EJB schema are generated.
3. For each PIM class, an EJB data class residing in the EJB data schema corre-

sponding to the PIM class is generated.
4. Each PIM association is transformed into an EJB association.
5. For each PIM association class, two EJB associations and a data class are gener-

ated.
6. Each attribute of a PIM class is transformed into an EJB attribute of a data class.
7. Each PIM operation is transformed into an EJB operation of the EJB component

corresponding to the PIM class of the PIM operation.

Fig. 3. Informal transformation rules (adapted from [7, p.58])

Fig. 4. Two of the transformational patterns corresponding to the informal rules

responding to a PIM class is the schema (component) that was generated by rule
2 based on the root class of the PIM class.

Each informal rule is modelled as a single transformational pattern, except
for rules 1, 4, and 5, which have two alternative patterns. The rules could have,
of course, been modelled in many different ways, resulting in a different set of
patterns. Fig. 4 shows two of the patterns, and the rest are omitted for brevity.
The top one corresponds to rule 1a, and describes the relationship between a
UML class and an EJB key class. The bottom one corresponds to rule 1b. Both
patterns have already been converted to a form required by the MADE tool. I.e.,
associations have been replaced by dependencies and OCL-constraints refer to
pattern roles directly by their names instead of navigating along associations.

Each class (rectangle) in the picture represents a role and a dependence
(arrow) between roles means that one role refers to the other in a constraint or
a default value specification. The smaller of the two patterns in Fig. 4 contains
four roles; Class (UML class role), KeyClass (EJB key class role), Attribute (EJB
attribute role), and EJBDataType (EJB datatype role).
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Fig. 5. Four screenshots from applying the pattern Class-to-Keyclass

KeyClass refers to Class, and Attribute refers to every other role. Constraints
are shown inside the class symbols, one OCL constraint per line. For example,
Attribute has three constraints; the first one constrains the name, the second
one requires Attribute to be contained within KeyClass, and the third one states
that Attribute’s type must be EJBDataType. The constraints have been cut off
at the edge of the class. For example, the complete constraint for KeyClass is
name = class.instance.name +’Key’. The default values for attributes have
been omitted, since in this case they would look exactly like the constraints.

To apply the patterns, the designer opens the source model in Rose and starts
MADE. She can then select, e.g. the Class-to-KeyClass -pattern (Fig. 4, on top)
and begin applying it. No roles are bound yet, and only two of the pattern’s roles,
Class and EJBDataType, do not depend on other roles. Therefore there will be
two visible tasks: Provide ’Class’ and Provide ’EJBDataType’. The designer
can now select the task for Class and choose to locate an existing element.

Figure 5a contains a screenshot of MADE at this moment. The top left corner
shows the pattern selection, as well as a list of pattern instances. The next pane
to the right contains a view of the active pattern instance. This pane is empty,
because there are no elements bound to the pattern instance’s roles. The pane
in the top right corner shows current tasks. A dialogue for selecting a UML class
to be bound to the Class role is in the lower left corner.

The designer chooses to apply the transformation on the class Breakfast. The
class Breakfast is bound to the role Class, satisfying the task Provide ’Class’,
which disappears. A new task appears for KeyClass, because it only refers to
Class, which is now bound. Breakfast appears in the list of bound elements,
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signifying that it is bound to a class role. Figure 5b shows the list of bound
elements and unfinished tasks as they would appear.

Let us assume that the target model has already been populated with the
basic data types, such as string, integer, etc. The designer can select the task for
EJBDataType and choose to locate an existing element. The constraint (name =
’Integer’) is used to locate the class. The task is now completed, and disappears
(Fig. 5c). Integer is added to the list of bound elements. No new tasks appear.

The designer highlights the remaining task and chooses to automatically
complete it. Default value has been specified for role KeyClass and the tool
creates a new class with the name BreakfastKey in Rose. The generated element
is bound to the role, and added to the list of bound elements. The completed
task disappears and a new one appears for the role Attribute (Fig. 5d).

The element for the attribute role, too, can be generated, and the designer
chooses to have MADE do that. A new attribute is created for the class Break-
fastKey, the name of the attribute is set to "BreakfastID", and its type is set
to be the class Integer. The task is completed, BreakfastID is added to the list
of bound elements, and the task disappears. The pattern has now been applied
successfully for Breakfast. For this PIM, the pattern would be applied 4 more
times, once for each regular class.

For the two association classes, the pattern in the lower half of Fig. 4 is
used. After choosing to apply the pattern, tasks appear for AssociationClass
and EJBDataType. The latter can be automatically bound to the correct basic
type (Integer). The designer has to select the association class manually, and she
picks Change. Three new tasks appear, one for each of KeyClass, AssocEnd1,
and AssocEnd2. The designer lets the tool create an element for KeyClass. She
completes the active tasks by manually binding each association end.

The two new tasks (for Class1 and Class2) could be fulfilled automatically,
since an association end can only be connected to a single class. However, the
automatic locating of elements in MADE works based on the value of the name
field only. The designer has to choose those manually, too. The elements for
Attribute1 and Attribute2 can be generated automatically, and that is what she
decides to do. Applying the pattern is finished.

6 Evaluation

The first thing to note about the example is how much user interaction it re-
quires. Each transformational pattern must be applied manually, and the user
must initiate each generate or locate operation, even if the tool can complete it
autonomously. With a source model of 41 elements (classes, attributes, etc.), as
in the example, there will be 41 instances of transformational patterns applied.
With the exact rules used here, this translates to 163 manual selections and 93
automatically located or generated elements. This observation, although correct,
is in many ways misleading.

The numbers are in no way absolute, because they are highly dependent on
how the rules are modelled. Regardless of the exact numbers, the burden on
the user is far too high. However, the low level of autonomy is due to the tool,
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not the approach, and the user interaction could be greatly reduced with simple
measures. In fact, because this particular set of rules is unambiguous, the user’s
participation could be limited to simply initiating the transformation. It should
be noted, that we do not consider full automation as an important goal.

MADE can be instructed to automatically bind every role as soon as the
roles it depends on are bound. If this option were extended to take into account
more than just the name field, the user would be relieved of many monotonous
tasks. If, in addition, each transformational pattern were applied automatically
to each configuration of elements that satisfies the pattern’s structure and other
constraints, all but 14 cases of user choices could be eliminated. In those cases, a
single pattern by itself does not have enough information of the transformation as
a whole to locate or generate the necessary elements. In order to make the correct
choices, the tool must have some idea of the way the individual patterns overlap
and interact. We believe this could be achieved by expanding the experimental
pattern composition functionality to allow dynamic composition.

Applying transformational patterns, even with the most basic tool support,
fulfills many of the requirements discussed in Sect. 2. The approach is transpar-
ent, and does not hide transformation mechanics. The designer has full command
of the process, and can change any details right down to the level of individual
bindings. Even when the tool is improved to better facilitate automatic steps,
they will only be engaged at the user’s discretion, not the tool’s. This all helps
the designer to understand each step of the process, which leads to openness.

Customisability is limited to user’s choices and relies on her decisions. A task
can be defined as optional, and if chosen, can reveal an otherwise inaccessible
path of tasks. It might also be possible to use dynamic composition of patterns
to introduce more elaborate variation points. Customisability is one of the areas
where better mechanisms and further research is needed.

Patterns, as implemented on MADE, are biased towards a direction, because
dependencies are directed. But patterns as described in Sect. 3 use associations
to express relations between roles. Forcing the user to choose in which role a
symmetric constraint is placed does tilt the balance in favour of one direction
over the other. Using associations, the other role(s), too, could have such a
symmetric constraint. Constraints could even copied and added automatically
for simple constraints, such as equality, that are easily recognised as symmetric.

MADE stores information about bindings, which makes the record of trans-
formation persistent. Even after modifications to the models, the record can still
be used as a starting point for synchronizing the models. None of the user de-
cisions are lost, although some might have become irrelevant. Reversibility and
traceability can thus be achieved. On the other hand, MADE lacks facilities,
illustrative or not, to visualise these mappings. Elements that are bound to a
particular pattern instance can be highlighted in Rational Rose, but there is no
indication of which role an element is bound to. So, it is possible to find out
information about the relations between elements of different models, but there
is no easy way to study it in the tool.
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Using patterns for transformations enables performing the transformation in
small, incremental steps. The problems with the current machinery are in com-
bining these steps into transformations and, further combining transformations
together into bigger transformations. This has a negative effect on reusabil-
ity and maintainability. Lack of visualisation also makes documenting more
difficult.

To recap; our approach, as it is now, provides open, incremental, traceable,
reversible, and unbiased transformations, but has problems when it comes to
visualising, customising and combining transformations. The current tool envi-
ronment works for evaluating the approach, but is not mature enough for real
transformations. It burdens the user with some tasks it should carry out au-
tomatically and supports only unidirectional transformations. Improving facili-
ties, both with the approach and the tool, to properly address the challenges is
vital.

7 Related Work

Work by Hausmann et al. on visualizing model mappings [8] is partly driven
by goals similar to ours. In their work, mappings between model elements are
thought of as relations in the mathematical sense. Model mappings are expressed
with extended UML class and object diagrams. The importance of comprehensi-
ble transformations and rules is one of the main issues raised and discussed. Being
based on relations, the approach encourages bi-directional transformations.

QVT-Partners’ response [9] to the Query / Views / Transformations (QVT)
request for proposals is one of the most detailed and finished work. It describes
a language for transformations and a textual and a visual representation for
it. Transformations are divided into relations and mappings. Relations are bi-
irectional, but can only be used for checking whether the source and target model
are properly synchronized. Mappings are used for performing a transformation,
but are restricted to one direction.

Many approaches at MDA transformations are based on graph grammars.
Such approaches tend to produce strictly unidirectional transformations due
to the clear separation to left hand side (LHS) and right hand side (RHS) in
individual rules. Also, definitions are often given only in a textual form. For
example, GREAT [10] is a graph rewrite system for transformations on UML
models, where LHS is defined with a textual language. RHS is defined as Java
code, which manipulates the model through an API. Such transformations are,
of course, unidirectional.

The theories behind VMT [11] and BOTL [12], too, are based on graphs.
Both use attributed labelled graphs and offer a graphical notation for describing
a source (LHS) and target template (RHS) for transformation rules. In VMT
transformations can only be performed on UML models and in one direction.
BOTL transformations can be bi-directional and can handle arbitrary metamod-
els. The expressive power of VMT’s visual notation is enhanced with OCL.
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Some approaches use XSLT to process models in XMI form. Due to the
nature of XMI these approaches are rarely limited to a single metamodel. XSLT-
based methods are often textual, but UMLX [13] is a graphical transformation
language. The metamodels (called “schemas” in UMLX) is given using a subset of
the UML class diagram notation. Transformations are defined with an extended
class diagram notation, and are translated into XSLT form using the information
about the structure of the metamodel. The XSLT is then executed on the input,
which is provided in XMI form. Transformations are unidirectional.

A textual transformation language, based on rules, is described in [7]. The
language is intended as a means to illustrate the sample transformations, and
not as a real transformation language. Transformations are composed of small
rules and can be declared as either unidirectional or bi-directional. OCL has an
important role in the language.

The focus on most papers is on explaining the mechanics of the language or
approach. Characteristics such as openness, customisability, maintainability, and
how illustrative are the notations used, fall out of scope. It is therefore difficult
to determine how much emphasis is placed on these aspects, which in our view
are of great importance.

Similarly to our approach, Catalysis [14] makes use of role-based patterns (so-
called “frameworks”) for describing abstract collaborations of model elements.
A major difference is that Catalysis emphasizes specifications of the semantics of
the collaboration while we have a more pragmatic view emphasizing task-driven
model (or code) generation based on the default value specifications.

8 Concluding Remarks and Future Work

In this paper we first listed and discussed what we believe to be key require-
ments for MDA transformations: openness, customisability, combinability, trace-
ability, and maintainability. The new approach at MDA transformations, trans-
formational patterns, was described and explained. A more generic pattern tool,
MADE, was presented briefly. An example of performing a simple transforma-
tion using transformational patterns and the tool was presented. The approach
was evaluated in light of its applicability in the example and its compliance with
the key MDA requirements. Last, other groups’ work on visualising and defining
model transformations and mappings was discussed.

The example was very limited, but it did indicate some strengths and weak-
nesses of transformational patterns. We wish to pursue several related issues fur-
ther. Visualisation of patterns, as well as the reverse, discovering patterns from
examples are important for usability. Defining and utilizing variation points is
another area of interest for us. The rule composition mechanism needs more
flexibility. We are looking into implicit and explicit rule scheduling, as well as
some hybrid solutions. Also, the tool support must be elevated. We are currently
working on supporting arbitrary MOF-based metamodels in processing and vi-
sualisation. We hope to carry out a more realistic case study, where neither the
transformation specification nor the set of models is unrealistically simple.
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Abstract. Model transformations are the core of the MDA approach to software 
development. As specified by the OMG, model transformations should act on 
any kind of model of any kind of metamodel, which implies the possible 
“reflective” use of model transformations, i.e., model transformations acting on 
model transformations. However, this requires transformation developers to be 
familiar with the metamodel of the transformation language itself, which is not 
always the case. In order to overcome such a frustrating impediment for the 
MTL language, and inspired by AOP approaches, we have designed and 
implemented an MTL weaver that modifies MTL transformations according to 
some weaving behavior, which is specified as special MTL transformations, 
called MTL-aspects, using an AOP-like extension to the MTL language. Both 
the weaver and the language extension are presented in this paper, and an 
example is used to show how transformation developers can take advantage of 
the proposed language extension constructs in order to write “reflective” model 
transformations in MTL without requiring any previous knowledge of the MTL 
metamodel itself.  

Keywords: Model-Driven Architecture, MDA, Model Transformations, MTL, 
Aspect-Oriented Programming, AOP.  

1   Introduction

To escape from the proliferation of middleware infrastructures and to avoid drowning 
in their implementation complexities, models are proposed as a far more accessible 
and easier means for developers to build, extend, and evaluate applications than 
working directly at the code level. The Model Driven Architecture (MDA) [1][2], an 
Object Management Group (OMG) [3] initiative, promotes the separation of concerns 
between two modeling dimensions: one focusing on the business functionality 
(resulting in Platform Independent Models – PIMs), and the other one focusing on the 
implementation of that functionality on a specific middleware platform (resulting in 
Platform Specific Models – PSMs). Since in this paper we consider the middleware to 
be our MDA platform, further on we will directly refer to the middleware instead of 
the general concept of (MDA) platform.  

Besides the obvious importance of PIMs and PSMs in MDA, model 
transformations are undoubtedly the key technology in the realization of the MDA 
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vision [4]. Among other usages, model transformations are the ones responsible for 
refining PIMs into PSMs (or abstracting away from PSMs to PIMs) and mapping 
PSMs to concrete middleware-based implementations, providing thus an elegant 
approach to adapt PIMs to the peculiarities of the new middleware infrastructures that 
do not cease to appear.  

Unfortunately, there is not yet a standard language for defining model transforma-
tions. To fill this gap, OMG has issued a Request for Proposal called MOF 2.0 Query/ 
Views/Transformations RFP [5], which has been answered by eight different initial 
submissions, five revised submissions, and finally two “joint” revised submissions.  

A clear requirement in OMG’s RFP was (and still is) that model transformations 
should be able to act on any kind of model of any kind of metamodel. Since model 
transformations are at the same time models compliant with the metamodel of the 
transformation language, model transformations should be able to transform other 
model transformations independently of their metamodels. As a consequence, all 
currently existing model transformation languages (to our knowledge) implement 
such a “reflective” behavior. However, the “reflective” use of model transformations 
is not trivial.  

Typically, writing model transformations for driving the development process of 
domain-specific applications requires the transformation developer to be familiar with 
the metamodel of that specific domain and with the syntax of the model transfor- 
mation language used – and no more than that. As a consequence, many transfor- 
mation developers are not at all familiar with the metamodel of the transformation 
language itself, and thus they are not capable of writing “reflective” model 
transformations, i.e., model transformations that transform already existing model 
transformations.  

In order to overcome this frustrating impediment for the INRIA Model 
Transformation Language (MTL) [6], we present in this paper a solution inspired by 
Aspect-Oriented Programming (AOP) [7] approaches. We have designed and 
implemented an MTL weaver that modifies MTL transformations according to some 
weaving behavior that is specified as a special kind of MTL transformations, called 
MTL-aspects. The MTL transformation produced by the MTL weaver can be 
immediately used for refining application models.  

Like in AspectJ [8][9], which is an aspect-oriented extension to Java, the syntax 
defining the weaving behavior in MTL-aspects is a small AOP-like extension to the 
MTL language itself. In this way, relying on a few high-level AOP-like but MTL-
based constructs for defining the weaving behavior, average MTL transformation 
developers should not have any problems using this MTL extension straightforwardly 
for defining their “reflective” model transformations.  

The rest of the paper is structured as follows: Section 2 provides the motivation of 
this work by discussing concrete examples where such a weaving functionality is use-
ful; Section 3 gives a concise overview of the MTL model transformation language; 
Section 4 introduces the MTL weaver, describes the AOP-like extension to MTL for 
defining the weaving behavior in MTL-aspects, and presents an example showing 
both the input and the output of a concrete weaving; Section 5 draws some 
conclusions and presents future work directions. 
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2   Motivation 

Based on our experience with MTL transformations, we present in this section how 
currently applied MTL transformations benefit from the weaving support provided by 
the MTL weaver, promoting the separation of concerns paradigm even at the level of 
model transformations.  

Separation of concerns [10] and modularization are fundamental techniques of 
software engineering. Decomposing software into smaller, more manageable and 
comprehensible parts, each of which encapsulating and addressing a particular area of 
interest, called a concern, is a well-proven method for developing applications that 
are easy to configure, adapt, or extend according to changes in the requirements 
specification.  

Middleware is an essential element in large distributed systems like those that  
support enterprise applications and require multiple heterogeneous components to inter- 
operate. Moreover, middleware, like software in general, is subject to concerns. Several 
concern-dimensions specific to middleware can be grouped into a category called 
Middleware Services, as middleware addresses specific concerns of a system, such as 
distribution, concurrency, security, or transactions. An extended list of categories that 
group several middleware-specific concern-dimensions can be found in [11].  

In order to address such middleware services in an MDA fashion and following the 
separation of concerns principle, we defined the Enterprise Fondue software develop-
ment method [12]. As an integral part of the Enterprise Fondue method, we propose 
several MDA-oriented UML profiles that address middleware-specific concerns at 
different levels of abstraction. MTL transformations are used to incrementally refine 
existing design models (within the same or between different MDA-levels) along 
middleware-specific concern-dimensions according to the proposed UML profiles. A 
complete example of applying the Enterprise Fondue method for addressing the 
distribution concern was presented in [13], where we considered CORBA [14] as our 
target implementation technology. The UML-D Profiles proposed in [13] address the 
distribution concern at three different MDA-levels of abstraction: platform-
independent level (the DistributionProfile), abstract realization level (the 
AbstractDistributionRealizationProfile), and concrete realization level 
(the CORBADistributionRealizationProfile).

Based on the support provided by the MTL weaver, we refactored the MTL trans-
formation that refined application designs along the distribution concern-dimension 
according to the DistributionProfile (as promoted by the Enterprise Fondue 
method). Instead of one big model transformation that performed the entire 
refinement, we have now a standard MTL transformation that performs the copy of 
an input model to an output model, both models being compliant with the same UML 
metamodel, and a very small MTL-aspect that defines the weaving behavior 
according to the DistributionProfile that has to be applied. The MTL-Copy
transformation and the MTL1-D-Aspect are now fully separated from each other, 
just as they should be, since they address totally different concerns. Figure 1a 
sketches the refinement process in the presence of the MTL1-D-Aspect, or more 
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Fig. 1. Refining along the Distribution, RMI-Technology, and Java-Language Concern-
Dimensions  

generally in the presence of MTL-aspects. Its name, MTL1-D-Aspect, was chosen in 
accordance with the MTL1-D transformation defined in [13] for refining along the 
distribution concern-dimension. The MTL-Distribution-Copy transformation is 
the result produced by the weaver when modifying the MTL-Copy transformation 
according to the weaving directives defined in the MTL1-D-Aspect.

A more complex example is shown in Figure 1b, where the metamodel of the input 
and output models changes; we move from a UML model to a Java model that repre-
sents the concrete Java implementation. Considering as input the output model of the 
previous refinement process, we refine this time along the RMI-technology [15] and 
Java-language concern-dimensions as defined by the Enterprise Fondue method. 
While the MTL-UML2Java transformation deals with translating any UML model to 
its correspondent Java model (relying on their respective metamodels), the MTL22-D-
Aspect addresses how distribution specific elements in the UML model are 
translated into their Java model counterparts when employing RMI as their 
implementation technology. For instance, interfaces marked as «Distributed» in 
the UML model will extend java.rmi.Remote in the Java model; similarly, the 
class of the object marked as «Servant» will extend java.rmi.server.
UnicastRemoteObject in the Java model, and so on. Once again, the name, 

UML Metamodel UML Metamodel Java Metamodel

MTL-RMI-UML2Java
: MTL-UML2Java

(with Distribution for RMI)

MTL-Distribution-Copy
: MTL-Copy

( with Distribution)

MTL
Transformation

Definition

MTL
Transformation

Application

MTL-UML2JavaMTL-Copy

UML Model with
Distribution ElementsUML Model

Java Model with
Distribution Elements

for RMI

MTL1-D-Aspect

UML Profile
for

Distribution

UML Profile for
RMI

Distribution Realization

configuration

configuration

MTL22-D-Aspect
«conform» «conform» «conform»

«merge»

«weave in» «weave in»

UML Profile for
Abstract

Distribution Realization

«merge»

«apply»

«apply»

a. Distribution b. RMI and Java



 “Weaving” MTL Model Transformations 127 

MTL22-D-Aspect, was chosen in accordance with the MTL22-D transformation 
defined in [13] even though we considered this time another technology, i.e., we have 
chosen RMI instead of CORBA. The MTL-RMI-UML2Java transformation is the 
result produced by the weaver when modifying the MTL-UML2Java transformation 
according to the weaving directives defined in the MTL22-D-Aspect.

As can be seen in Figure 1, the support provided by the MTL weaver has enabled us 
to modularize the different concerns in stand-alone units of encapsulation represented 
by MTL-aspects. In this way, we give transformation developers not only the possi-
bility, but also the means to rely on the well-proven power of separation of concerns 
even at the model transformation level. Moreover, the size of such MTL-aspects is 
very small, compared to the corresponding implementation in the initial MTL 
transformations, since they rely on the MTL weaver which is now the one carrying all 
the burden of the weaving. The example presented in Figure 1a is reconsidered in 
section 4.2, where we discuss in more details its complete implementation.  

Besides encapsulating middleware-specific concerns into MTL-aspects as present-
ed in this section, the number of possible usages of such MTL-aspects is unlimited 
since the support provided by the MTL language enables us to implement almost 
anything in the MTL weaver, and thus, the expressiveness power that could be 
provided to transformation developers through the MTL extension syntax may be 
very broad, covering all possible and impossible needs that developers may think of.

3   The Model Transformation Language (MTL)

This section provides a concise overview of the MTL transformation language 
focusing mainly on the concepts that are relevant in the context of this paper. Readers 
that are familiar with the MTL language may skip this section and jump directly to 
section 4 which presents the MTL weaver.  

Many different solutions have been proposed for model transformation languages, 
making it very hard for the OMG to merge all ideas into one future standard. Unfortu-
nately, standards of the future are not solutions to problems of today. The idea of the 
INRIA Model Transformation Language (MTL) [6] is to provide all model 
transformation facilities, including the possibility to transform MTL transformations. 
This makes it possible for the future QVT language standard to be mapped to an MTL 
transformation by means of an MTL transformation. This pivot approach has already 
been validated. The MTL itself is developed according to a bootstrap approach: a 
simple language, called BasicMTL [16], provides the most important facilities, such 
as classes or attributes, and new facilities are added by extending the abstract syntax 
and by making a transformation from the extended to the initial syntax, always 
relying therefore on the small “kernel” of BasicMTL. As an example, associations 
between classes have been added in this way. Moreover, the plan is to transform, or in 
other words, to compile the Atlas Transformation Language [17] into an MTL 
transformation. As a conclusion, MTL aims more at motorizing model 
transformations than proposing a new standard.  

As suggested just before, MTL is an object-oriented imperative language for model 
transformations. Therefore, MTL transformations are defined as programs in terms of 
classes, methods, attributes, etc. In order not to confuse these MTL constructs with 
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the ones that the manipulated model may contain, we will further on refer to them as 
MTL classes, MTL methods, MTL attributes, and so on. A special entry point, the 
main method, has to be defined for each MTL transformation. Pieces of MTL 
transformations are organized in MTL libraries, each library being in addition 
responsible for holding models. Each such model can either be a collection of 
instances of MTL classes from an MTL library, or a collection of model elements 
inside a repository.  

MTL is a compiled language; Figure 2 presents the compilation process. In order to 
compile an MTL transformation T described in an mtl file, the first step is to parse it. 
A parser  reads the transformation as text and transforms it into an internal model 
that is compliant with the abstract syntax of MTL [16]. In the next step, a type 
checker  refines this model by adding information about types. For instance, in 
order to deal with polymorphism, the type checker will perform the analysis of MTL 
methods in order to reference, for each of them, other MTL methods that they are 
overriding. If necessary, the types used by the transformation T might need to be 
referred (by the type checker) from already compiled MTL libraries. For example, the 
MTL standard library, which defines the MTL predefined types and operations, is 
typically used by all MTL transformations, and thus, it participates in such library-
usage dependencies. In order for the MTL transformation T to be reused by other 
MTL transformations, its internal model, decorated with type information, is stored in 
a binary file (T.tll). In the end, a code generation step is performed . Java 
source files that implement the behavior described by the internal (refined) model of 
the MTL transformation T are generated, and they will make use of the model 
repositories on which the implemented transformation was defined to act. We used 
two * signs in Figure 2 in order to show that many precompiled libraries (*.tll) may 
be needed, on one hand, and several Java source files (*.java) may be generated, on 
the other hand, for one single MTL transformation. If transformation T relies on other 
libraries, the generated Java source files for T will require the Java source files that 
resulted from the compilation of those libraries.  

The entire compilation process relies on the model of the MTL transformation T it-
self, which complies with the well-defined MTL metamodel. Therefore, steps ,
and  can be viewed as special transformations acting on the MTL model of the  

Fig. 2. The MTL Compilation Process  
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transformation T itself. Besides these three steps, it is at this MTL model level of the 
MTL transformations that new special transformations may be defined in order to 
change the very behavior of those MTL transformations. Following this idea, our 
MTL weaver is indeed implemented as such a special transformation, acting on the 
MTL models of the MTL transformations and transforming them according to the 
weaving behavior defined in MTL-aspects, as we will see in section 4. 

4   The MTL Weaver

Reusability has always been an important concern in the software development 
industry because of its potential to reduce the cost of software development. During 
the last decade, different levels of reuse have been proposed, such as functions, 
procedures, classes, components, aspects, or even entire models. But how can we 
achieve the reuse of model transformations? How to adapt existing model 
transformations that successfully fulfill most of our needs?  

The reuse of MTL transformations is currently promoted at the level of MTL 
libraries, which are some kind of light model transformation components. In this 
section, we present some implementation details and the facilities provided by an 
aspect-oriented support that allow transformation developers to reuse existing MTL 
transformations and to easily adapt them in order to address new needs, or concerns, 
that the application under development has to incorporate. The main concepts of the 
MTL weaver are introduced along with the AOP-like extension to MTL for defining 
the weaving behavior in MTL-aspects. We also present an example showing both the 
input and the output of a concrete weaving.  

The standard MTL language already provides support for transformation develop-
ers to define MTL transformations that transform other MTL transformations. 
However, writing such “reflective” MTL transformations still requires transformation 
developers to be familiar with the metamodel of the MTL language itself, a 
requirement that significantly reduces the number of such developers. In order to 
overcome this impediment for the MTL language, we propose a solution inspired by 
AOP approaches. We have designed and implemented an MTL weaver that modifies 
MTL transformations according to some weaving behavior that is specified in terms 
of weaving directives modularized in special stand-alone MTL transformation 
encapsulation units called MTL-aspects. Like in AspectJ, which is an aspect-oriented 
extension to Java, the syntax defining the weaving behavior in MTL-aspects is a small 
AOP-like extension to the MTL language itself. In this way, relying on a few high-
level AOP-like but MTL-based constructs for defining the weaving behavior, average 
MTL transformation developers should not have any problems using this MTL 
extension straightforwardly for defining their “reflective” model transformations.  

The place of the MTL weaver in the MTL compilation process and the evolution of 
the MTL weaving process are presented in Figure 3, where the MTL transformation T
is refined according to the weaving directives defined in the MTL-aspect A. The 
weaving process is very similar to the compilation process presented in Figure 2. 
First, both T and A are parsed  in order to transform the two text files into internal 
MTL models compliant with the MTL metamodel. The important change comes next, 
when the MTL Weaver reads the two internal models of T and A, and produces a  
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Fig. 3. The MTL Weaving Process  

new model instance (of the MTL metamodel) for the new MTL transformation T+A,
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be reused later on in order to transform application models. Moreover, the MTL-
aspect A may be reused as well for refining other MTL transformations according to 
the same weaving directives.  

4.1   MTL-Based Syntax for Describing the Weaving Behavior  

There are two major requirements that an MTL-aspect must fulfill. First, it must 
clearly identify where the modifications have to be performed, and second, it must 
clearly define what are those modifications. In AOP terminology, a join point is a 
well-defined point in the execution of a program where additional functionality may 
be “injected”. To identify such points in our weaving process, a pattern matching
mechanism is used based on the names of the MTL libraries, MTL classes, MTL 
methods, etc. Both requirements can be expressed using the MTL syntax, relying on 
small extensions that are detailed in this section.  

One of the extension mechanisms proposed by the MTL language is the tagging  
facility. Tags are key/value pairs associated either with an MTL library, an MTL 
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Figure 3  to access these tags and to use them for very different purposes. Since 
MTL-aspects only rely on the tag extension mechanism to define additional weaving 
directives, it is possible to use the same parser for reading both MTL-aspects and 
MTL transformations, as shown in Figure 3 .
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readability, we will further on refer to the MTL library taken as input for the weaving 
process as input library, i.e., the library that plays the role of T in Figure 3, and its ele-
ments as input classes, input methods, etc. The MTL library produced as a result of 
the weaving process, T+A in Figure 3, will further on be referred to as output library,
and its elements as output classes, output methods, etc.

Each line in Figure 4 may be considered as a weaving directive for the MTL  
weaver. For instance, the first line defines the name of the input library in which the 
MTL1-D-Aspect will have to be weaved, i.e., Copy. In order not to alter the Copy
input library during the weaving process and to avoid name clashes between input and 
output libraries, the name of the output library has to be provided. This can be 
achieved by defining a tag on the MTL library of the MTL-aspect. We have named 
this tag rename, and its value represents the name of the MTL library produced as a 
result of the weaving process, e.g., Distribution in this particular case.  

By default, elements of the input library will be simply reproduced in the output  
library. However, this simple reproduction can be tuned by the rest of the MTL-
aspect. For instance, in Figure 4 , the MTL class Copier is defined. This weaving 
directive indicates to the MTL weaver that if a class with the same name exists in the 
input library, then the reproduced class in the output library contains both the 
members in the input class and the ones defined in the MTL-aspect class. This process 
is called class merge. On the other hand, if such a class does not exist in the input 
library, then it will simply be added to the output library exactly as defined in the 
MTL-aspect, i.e., it will include all member definitions defined by the MTL-aspect, 
e.g., the servantI terfaceName MTL attribute and the initDI MTL method.  

A conflict may appear during a class merge if some members in the matching input 
classes and in the MTL-aspect class have the same name. If the member in the MTL-
aspect is an attribute, it will be added as it is, without worrying whether the name of 
the attribute already exists in the input MTL library, since the rest of the compilation 
process will detect such a duplicate attribute, if any, and an error will be thrown. For 
methods, the detected conflict is registered to be solved later.  

library Copy;
tag rename := specialtag [Distribution];

class Copier {
servantI terfaceName : Standard::String;

initDI(sin : Standard::String) : Copier {
    self.servantI terfaceName := sin;
    return self;
  }
}

class [{Copier$}] {
  [{^getTarget(.*)}](theSource : Standard::ModelElement)
  tag merge := specialtag [Append];
  tag refactorParameters := booleantag true; {
    theSource.toOut();
  }
}

Fig. 4. Snippets of the MTL1-D-Aspect
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MTL-aspect developers may refer to many MTL classes or MTL methods in a 
single pattern by relying on “wildcard” facilities, such as an underscore “_”, which 
matches any name, or more sophisticated regular expressions delimited by curly 
brackets. For instance, in Figure 4 , the class named {Copier$}, matches all input 
classes whose names end (denoted by $) with “Copier”, and its method 
{^getTarget(.*)} matches all input methods, defined on the matched input classes, 
whose names start (denoted by ^) with “getTarget”. However, it would be considered 
an abuse to use such constructs for adding new classes or methods to the output library.  

The class merge process, as it is implemented in the MTL weaver, is shown in 
Figure 5. The libClass represents the input class, and the behaviorClass
represents the MTL-aspect class. Please note that the name of the behaviorClass
matches the name of the libClass as a precondition for the mergeClass method.  

A method conflict may be solved according to some predefined rules. We have 
identified three kinds of possible rules that prescribe the MTL weaver how to manage 
the instructions defined by the conflicting method of the MTL-aspect:  

•  add MTL-aspect instructions at the very beginning of the output method,  
•  add MTL-aspect instructions just before returning from the output method, or  
•  replace input instructions with MTL-aspect instructions in the output method.  

It is the responsibility of the MTL-aspect developer to indicate which alternative 
she desires to be chosen for a given method conflict. For this purpose, we defined the 
merge tag that has to be added to each conflicting method in the MTL-aspect. The 
three possible values corresponding to the previously described rules are Prepend,
Append, and Replace respectively. If a conflict cannot be solved, the weaving 
process ends in failure.  

Fig. 5. MTL Weaver Snippets for Class Merge (mergeClass)

mergeClass(libClass : BasicMtlASTView::UserClass;
           behaviorClass : BasicMtlASTView::UserClass) {
  lo : Standard::Set;
// adding attributes

  if (isNull(behaviorClass.definedAttributes).not()) {
foreach (at : BasicMtlASTView::Attribute)in (behaviorClass.definedAttributes) {

      libClass.appendDefinedAttributes(at);
    }
  }
// merging operations
foreach (bo : BasicMtlASTView::Operation) in (behaviorClass.definedMethods) {

    lo := matchingOperations(libClass, bo);
    if (lo.size().[=](0)) { // to be added
      if (self.canAdd(bo)) {
        libClass.appendDefinedMethods(bo);
      } else {
        bo.name.concat(' seems to be a pattern; no correspondance found.').toOut();
       'ignoring addition to class '.concat(libClass.name).toOut();
      }
    } else { // conflict, to be treated later
      self.operationConflicts := operationConflicts.including(
                             new OperationConflict().init(libClass, lo, bo));
    }
  }
}
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The instructions in the MTL-aspect method may need to refer to some parameters 
of the matched input methods. The presence of the boolean tag refactor 
Parameters set to true makes such parameters accessible inside the MTL-aspect 
according to the names provided in the MTL-aspect method. Moreover, this tag 
requests the method matching mechanism to take into account the number of 
parameters of the input methods rather than just matching the names of the methods.  

As an example, Figure 4 states that for all input methods whose names start 
with “getTarget” inside classes whose names end with “Copier”, the first parameter, 
named in the MTL-aspect theSource, must be sent to the console by means of the 
MTL predefined operation toOut. This output must be performed before returning 
from the modified MTL methods, as stated by the value Append of the merge tag 
defined for the MTL-aspect method.  

As a summary, the list of possible tags that may appear in the definition of an 
MTL-aspect is provided in Table 1. The first column gives the name of the tag as it 
must appear in the MTL-aspect. The second column indicates on which MTL element 
this tag may be defined. The third column indicates whether the presence of the tag is 
mandatory or optional; default values are indicated for optional tags. The fourth 
column gives a brief description of the semantics of the possible associated values.  

As we showed on some concrete examples, the MTL-aspect developer does not 
need to have a deep knowledge of the MTL metamodel and its semantics in order to 
transform an MTL transformation. All s/he needs to know is the MTL syntax and 
some predefined tags. Moreover, with the current implementation of the MTL 
weaver, an MTL-aspect is about 10 times smaller (in lines of code) and about 50 

Table 1. Predefined MTL-Aspect Tags  

Base 
Tag Name MTL Presence Description 

Element 

rename Library  mandatory  The name of the output library.  

merge Method  mandatory if 
conflict  

Prepend to add instructions at the 
very beginning of the method.  

   Append to add instructions just 
before returning from the method.  

   Replace to replace initial 
instructions with MTL-aspect 
instructions.  

refactorPa-
rameters

Method  optional; 
default value 
is false

Indicates if the number of parameters 
has to be taken into account by the 
pattern matching mechanism, and if 
parameters have to be intercepted for 
further usage inside the instructions 
of the MTL-aspect.  
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times faster to develop than a standard MTL transformation that would achieve the 
same weaving behavior on another MTL transformation.  

Please notice, however, that the MTL weaver and the aspect-oriented support  
provided are relatively young, still undergoing refinement and improvement as we 
move along. New constructs will be added in order to address MTL-aspect developer 
needs and to facilitate as much as possible the development of “reflective” MTL 
transformations. For instance, it would be very helpful to have a pattern matching 
mechanism for instructions or expressions, e.g., matching all calls to a given method. 
The pattern we adopted for extending the MTL language with AOP-like constructs 
will remain nevertheless the same, i.e., extending the language by providing new tags 
that change the semantics of their base element, just like UML profiles extend the 
UML. 

4.2   Running Example  

In this part, we consider weaving the MTL1-D-Aspect in the simple MTL Copy
transformation in order to modify its behavior and make a system distributed by 
applying the stereotypes defined in the DistributionProfile [13] according to 
some configuration information. Since the goal is to illustrate the most important 
principles of the weaving process, we focus on very small parts of the example.  

The input MTL Copy transformation is specialized in copying an input UML 1.4 
model to an output UML 1.4 model. Snippets of the transformation are presented in 
Figure 6. The transformation is located in the MTL library Copy, having two 
variables, in and out, for referring to the input, and output models respectively. One 
of the MTL classes of this library is Copier, which defines the getTarget method. 
This method takes as parameter a UML element srcElt from the in model, and 
retrieves and returns the corresponding UML element inside the out model. Another 
MTL class, extending Copier, is UML14CreatorCopier, which defines the 

library Copy;
model in  : RepositoryModel;    // should be a UML1.4 MetaModel
model out : RepositoryModel;    // should be a UML1.4 MetaModel
class Copier {
getTarget(srcElt : in::Core::Element) : out::Core::Element {

    r : out::Core::Element;
    ... // compute r
    return r;
  }
}
class UML14CreatorCopier extends Copier {
getTargetClass(src : in::Core::Class) : out::Core::Class {

    r : out::Core::Class;
    r := new out::Core::Class();
    trace(src, r);
    return r;
  }
}

Fig. 6. Snippets of the Copy Input Library
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getTargetClass method. This method takes a UML class src in the in model as 
parameter, and is responsible for creating and returning a UML class in the out model.  

We present now two of the modifications that have to be performed in order for the 
MTL Copy transformation to make a system distributed. The first one is to make an 
interface remotely available, but before doing this we first need to identify the right 
interface. The solution we considered is to add an attribute, servantI terfaceName,
to the MTL Copier class as a placeholder for the name of the interface to be 
distributed. This attribute is transmitted to the MTL Copier class by means of the 
new method initDI defined in the MTL1-D-Aspect. The second modification is to 
display on the console the UML elements from the in model for which a 
correspondence in the out model has been requested. A thorough analysis of the 
complete MTL Copy transformation would clarify that such correspondences are only 
requested when invoking methods whose names start with “getTarget”, and which 
belong to a class whose name ends with “Copier”. These modifications are prescribed 
in the MTL1-D-Aspect that was partly presented in Figure 4, where part 
corresponded to the first modification, and part  to the second one.  

The result of weaving the MTL1-D-Aspect in the MTL Copy transformation is 
shown in Figure 7. Even though we have clearly stated in section 4 that the results of 
the MTL weaving process are just MTL binaries and Java source files, Figure 7 repre-
sents what a pretty printer would produce for the MTL binary. Changes introduced by 
the MTL-aspect are highlighted by change bars. Since the output MTL library is 
different from the original MTL Copy library, renaming has occurred according to the 
rename tag that was specified on the library definition inside the MTL1-D-Aspect,
as shown in Figure 4.  

Part  of the MTL1-D-Aspect in Figure 4 states that an MTL class named 
Copier must appear with a servantI terfaceName attribute and an initDI
operation in the output library. Even though such an MTL Copier class already 
exists in the input library, no name conflicts have been found, and therefore member 
definitions from both the MTL-aspect and the input class are directly added to the 
MTL Copier output class, as shown by Figure 7 .

The MTL-aspect method defined in part  of the MTL1-D-Aspect in Figure 4 
matches the input methods Copier::getTarget and UML14CreatorCopier::
getTargetClass. One may note that the presence of the refactorParameters tag 
set to true in the MTL-aspect has forced the method matching mechanism to check 
that only one parameter is defined for these input methods, a parameter that will 
further on be used as the variable theSource inside the body of the MTL-aspect 
method. The tag merge set to Append defined on the MTL-aspect method indicates 
how possible conflicts should be solved. Since conflicts have indeed been found, the 
instructions defined in the MTL-aspect have to be inserted in the output class in such 
a way that they are executed just before returning from the corresponding 
reproductions of the input methods in the output class, as part of the output library. To 
achieve this, we rely on the MTL try-catch-finally statement: instructions of the 
input method are reproduced in the try part, and instructions from the MTL-aspect 
method are reproduced in the finally part, as shown in Figure 7 . In this way, we 
enforce that instructions from the MTL-aspect method are executed just before 

n

n
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returning from the output method, wherever an MTL return instruction may appear 
in the input method. The true value for the refactorParameters tag also instructs 
the MTL weaver to produce new variables in the output methods according to the 
parameters defined in the MTL-aspect method that are supposed to match parameters 
from the input methods. These new variables represent placeholders for the values of 
the parameters of the input methods that were intercepted by the corresponding MTL-
aspect method. Applying this rule to the two input methods matching the MTL-aspect 
method {^getTarget(.*)}, new theSource variables will be added in the 
corresponding output methods for storing the very input parameters that were 
previously matched (see Figure 7 [*]).  

5   Conclusions and Future Work  

All model transformation languages that we know of provide transformation 
developers with the facility to define “reflective” model transformations, i.e., model 

library Distribution;
model in  : RepositoryModel;    // should be a UML1.4 MetaModel
model out : RepositoryModel;    // should be a UML1.4 MetaModel
class Copier {
servantI terfaceName : Standard::String;
initDI(sin : Standard::String) : Copier {

    self.servantI terfaceName := sin;
    return self;
  }
getTarget(srcElt : in::Core::Element) : out::Core::Element {

    r : out::Core::Element;
    theSource : Standard::ModelElement;

theSource := srcElt;  // [*]
    try {
      ... // compute r
      return r;
    } finally {
      theSource.toOut();  // [*]
    }
  }
}
class UML14CreatorCopier extends Copier {
getTargetClass(src : in::Core::Class) : out::Core::Class {
theSource : Standard::ModelElement;
theSource := src;     // [*]

    try {
      r : out::Core::Class;
      r := new out::Core::Class();
      trace(src, r);
      return r;
    } finally {
      theSource.toOut();  // [*]
    }
  }
}

Fig. 7. Snippets of the Distribution Output Library
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transformations that transform other model transformations. However, writing such 
model transformations is generally beyond the ability of transformation developers 
since it requires the developer to be familiar with the metamodel of the transformation 
language itself. In order to overcome this frustrating impediment for the INRIA MTL 
transformation language, we presented in this paper an MTL weaver that modifies 
MTL transformations according to some weaving behavior that is specified as a 
special kind of MTL transformations, called MTL-aspects. Inspired from the AOP 
world in general, and from AspectJ in particular, the syntax defining the weaving 
behavior in MTL-aspects is a small AOP-like extension to the concrete syntax of the 
MTL language itself. In this way, relying on a few high-level AOP-like but MTL-
based constructs for defining the weaving behavior, average MTL transformation 
developers should not have any problems using this MTL extension straightforwardly 
in order to define their “reflective” model transformations.  

The support provided by the MTL weaver through the MTL extension syntax was 
illustrated on a concrete example, namely modularizing the distribution concern in 
stand-alone units of encapsulation represented by MTL-aspects. We have shown in 
this way that transformation developers are given not only the possibility, but also the 
means to rely on the well-proven power of separation of concerns even at the model 
transformation level.  

Even though our research was carried out for the INRIA MTL transformation lan-
guage, most of the concepts presented in this paper are MTL independent and could 
easily be applied to the future QVT specification language by providing higher level 
constructs for specifying the weaving behavior. For example, we can very well 
imagine the MTL1-D-Aspect be written at the QVT specification level, and then 
automatically refine it for the MTL language when applying it in the context of MTL-
based projects. Although the constructs introduced in this paper are very suitable for 
imperative model transformation languages (e.g., “before method return” or 
“after call”), we believe that similar counterparts may be identified in declarative 
model transformation languages as well (e.g., “after rule match”), and thus a 
common ground could be found at the QVT specification level.  
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Abstract. In the Meta Object Facility (MOF) meta-modeling architecture a 
number of model transformation scenarios can be identified. It could be ex-
pected that a meta-modeling architecture will be accompanied by a transforma-
tion technology supporting the model transformation scenarios in a uniform 
way. Despite the fact that current transformation languages have similarities 
they are usually focused only on a particular scenario. In this paper we analyze 
the problems that prevent the usage of a single language for different transfor-
mation scenarios. The problems are rooted in the current organization of the 
MOF architecture and especially in its inability to define explicitly the mecha-
nisms of instantiation and generalization found in different modeling languages. 
This causes a coupling between a transformation language and the instantiation 
mechanism specific for a given modeling language. We propose an organization 
of the MOF architecture based on a simple and uniform representation of all 
model elements no matter at which level they are defined. In this framework, 
different instantiation and generalization mechanisms are represented as a set of 
functions. We present a transformation language named MISTRAL1 acting in 
this framework. Transformation language is separated from the instantiation 
and generalization mechanisms specific for a given modeling language. 

1   Introduction 

A key element of the MDA (Model Driven Architecture) [11] is the notion of model 
transformation. A model transformation is a process of generation of a target model 
from a source model. A number of model transformation scenarios can be identified 
in current OMG standards and other publications [14][12][16][10]. Fig. 1 shows four 
transformation scenarios in the context of the MOF (Meta Object Facility) meta-
modeling architecture [13]. 

Fig. 1a shows a scenario with a transformation specified between two MOF meta-
models (UML and Java meta-models). This is the context of the Query/Views/ 
Transformation (QVT) Request for Proposals issued by OMG [14]. In this context 
transformations are specified between models at level M2 and executed on models at 
level M1. Fig. 1b shows similar scenario shifted one level down. It involves transfor-
                                                           
1 MISTRAL stands for Multiple IntenSion TRAnsformation Language. The notion of intension 

is regarded as a model of models and is elaborated in [9]. 
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mation execution on data at level M0. The diagram shows a transformation specified 
between a concrete DTD (Document Type Definition) and a concrete relational 
schema. The execution of the transformation converts an XML document to a rela-
tional database. This scenario is common in data warehousing and is addressed in the 
Common Warehouse Metamodel (CWM) [12]. Fig. 1c shows the Data Binding ap-
proach for XML processing [10] from the perspective of the MOF meta-modeling 
architecture. In this scenario a transformation is specified at level M2 and executed at 
the two lower levels. The execution at level M1 is known as schema compilation. The 
correspondence derived between the constructs in the models at level M1 serves as a 
specification of the transformation executed at level M0 known as unmarshaling. In 
current data binding tools transformation rules applied during unmarshaling are usu-
ally not powerful enough to express the correspondence between an arbitrary schema 
and an arbitrary set of application classes. In this respect XML processing can benefit 
from the ability of model transformation languages to express complex transforma-
tions [7]. 

The three scenarios may be regarded as intra-level transformations where input and 
output models reside at the same level. In contrast, we regard the scenario in Fig. 1d 
as inter-level transformation. Fig. 1d shows two standard mappings in MOF: XML 
Metadata Interchange (XMI) [16] and Java Meta-data Interchange (JMI). Both map 
the MOF Model (at M3) to a meta-model at M2 (e.g. DTD and Java meta-models). 
These transformations are executed on models at level M2 (e.g. the UML meta-
model) and the result is a model at level M1. Furthermore, a UML model at level M1 
may be transformed to an XML document or to a set of Java objects residing at level 
M0. 

 

Fig. 1. Model transformation scenarios 
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How do the current model transformation techniques support these scenarios? The 
QVT initiative aims at defining a standard transformation language for the first sce-
nario. CWM solves problems in the second scenario for a number of commonly used 
data sources. The third scenario is supported by proprietary data binding tools that do 
not consider transformations in the context of the MOF architecture. The mappings in 
the fourth scenario are described in a semi-formal notation using grammars, templates 
and textual descriptions. Although the transformation approaches taken in QVT and 
CWM share a number of similar concepts it is not possible to use a single transforma-
tion language for the first two scenarios. In the scenario in Fig. 1c the result of a trans-
formation at level M1 is used to derive a new transformation executed at the lower 
level M0. Current model transformation languages do not address the problem of 
transformation execution over more than two consecutive levels. Finally, both QVT 
and CWM do not consider inter-level transformations. 

One would expect that the outlined scenarios are addressed in a uniform way, that 
is, the organization of the MOF architecture allows a transformation language to op-
erate on models at any level. The analysis of the current transformation techniques 
reveals that the reality is different. In this paper we analyze the problems that prevent 
the usage of a single language for all the scenarios. In our opinion the problems are 
rooted in the current organization of the MOF architecture and especially its inability 
to define explicitly the mechanisms of model instantiation. This causes a coupling 
between a transformation language and the instantiation mechanism specific to the 
models it operates upon. Apart from the instantiation mechanism, generalization rela-
tions also have an impact on the transformation language concerning selection of 
source model elements and the substitutability among values. Different modeling 
languages have similar but different semantics of the generalization relation. The 
same coupling is observed between a transformation language and a given generaliza-
tion relation. 

We propose a framework for the MOF architecture based on a simple and uniform 
representation of all the model elements no matter at which level they are defined. 
The framework does not introduce changes to any MOF-related standard. MOF, UML 
and other languages may be imported in it. In this framework the instantiation and 
generalization mechanisms are defined explicitly. We present a transformation lan-
guage separated from the instantiation and generalization mechanisms specific for a 
given model. If a transformation is defined between two models the transformation 
engine is configured with the definitions of the corresponding instantiation and gener-
alization relations. Thus, the language is decoupled from these relations and is able to 
express transformations between models at arbitrary level. 

The paper is organized as follows. Section 2 gives detailed description of the  
problems we want to tackle. Section 3 describes our approach for representing model 
elements in the MOF architecture and how models are extended with additional  
information and used in the context of our transformation language. Section 4 pre-
sents the transformation language. Section 5 shows an example specification of an 
instantiation mechanism for the relational model. Section 6 analyses related work and 
section 7 gives the conclusions. 
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2   Problem Statement 

The languages proposed as an answer to the QVT RFP are based on the instantiation 
mechanism used to create MOF meta-models and models (at level M2 and M1 respec-
tively). A transformation selects instances of MOF classes in a source model at level 
M1 and produces instances in a target model at the same level. The definition of a 
transformation language that transforms models at level M1 is possible because all 
model elements conform to the MOF semantics. It defines which constructs at level 
M2 may be instantiated (instances of MOF Classifier that are not abstract) and the 
structure of these instances (having identity, slots and links). The specification also 
defines the meaning of the generalization relation: how features from a super-class are 
inherited in a sub-class and the rules for type substitutability based on the class hier-
archy. Since the constructs at levels M3, M2 and M1 conform to a common structure 
and the models share the same instantiation and generalization mechanism it is possi-
ble to define a language that works on any model at level M1. 

The MOF specification, however, does not specify the structure of the instances at 
M0 level and how they are related to their meta-constructs at level M1. The in-
stanceOf relation between a construct in M1 and its instances in level M0 may differ 
from the instanceOf relation between constructs in M2 and its instances in M1. This 
observation has been made in [4] where it is argued that the actual number of levels is 
3 instead of the widely accepted view of 4 levels. In fact, a model at level M2 defines 
a new language (e.g. UML, CWM, and Java) and that language brings its own defini-
tions of the instantiation and generalization relations. If a transformation is defined 
between two user models in M1 then the transformation engine has to identify which 
model elements are instantiatable and how the instance values are set. The lack of a 
standard way to describe the instantiation mechanism for the model elements at level 
M1 prevents the usage of QVT languages for the M0 level. 

How does the CWM solve that problem in dealing with a variety of data sources 
such as XML, relational, and record-based? It reuses the concepts of classes and in-
stances defined in UML meta-model. A meta-model that would be separately defined 
at level M2 is defined as a specialization of the CWM meta-model. Constructs that 
specialize Class construct can be instantiated and their instances conform to con-
structs that specialize Object. The problem here is the inability to handle models con-
forming to meta-models at level M2 if the latter are not defined as specializations of 
the CWM meta-model. 

If a transformation language is capable of transforming models residing at arbitrary 
level then it will require a common representation of the model constructs no matter 
the level they reside in and a uniform way of treating the different instanceOf and 
generalization relations. The discussion above showed that the MOF architecture does 
not provide these mechanisms. As a result current transformation languages are cou-
pled with a particular instantiation and a generalization mechanism. 

3   Approach 

The approach for solving the problems explained in the previous sections is based on 
two ideas. First, we represent the model elements in the MOF architecture according 
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to a simple generic model no matter the level they reside in. We define a transforma-
tion language that operates on instances of that generic model. Second, we consider 
four operations that occur in transformations: instantiation of an element from a meta-
construct, querying the structural features of elements for their values, setting values 
to the features and selection of source elements on the base of their meta-constructs. 
We show how these operations are affected by the instantiation and generalization 
mechanisms. The specifics of the mechanisms are encapsulated in the implementation 
of a set of functions used by the transformation engine to execute the four operations. 
The transformation engine is configured with the implementations of the functions 
before executing a transformation. In this way we achieve separation between the 
transformation language and the instantiation and generalization mechanisms specific 
for a given modeling language. 

3.1   Representation of Model Elements 

The MOF architecture is viewed as a homogeneous modeling space populated with 
model elements. The level at which a model element resides does not affect its repre-
sentation. Every model from the MOF architecture is represented as a set of model 
elements instances of a generic model (Fig. 2a).  

The generic model is shown in Fig.2b. Every model element has an identity and a 
number of named slots. Simple values (strings, numbers, etc.) are instances of Literal. 
The concept of slot used here is similar to the concepts with the same name defined in 
MOF and UML but we do not require that slots are instantiated from attributes. In our 
modeling space slots are used to connect model elements or to hold values repre-
sented by literals. The model in Fig.2b is represented in UML notation only for the 
purpose of readability. It is defined outside of the MOF modeling space and can also 
be described in some other notation. 

In the next sections two examples are given. Section 3.2 shows how the MOF 
Model itself is represented as an instance of the generic model. Section 3.3 shows a 
relational meta-model that defines the instanceOf relation explicitly. 

 

Fig. 2. Relation of the MOF architecture with the generic model of model elements 
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3.1   Representation of the MOF Model 

As first example we represent a subset of the MOF Model shown in Fig. 3. Primitive 
data types and the multiplicity of attributes and association ends are omitted for sim-
plicity. We assume that all the associations are unidirectional. 

 

Fig. 3. Simplified MOF Model 

The MOF Model can be represented as an instance of the generic model in Fig. 2b. 

 

Fig. 4. Object diagram for the MOF class ModelElement as instance of the generic model 

An object diagram for a part of the representation of the MOF abstract class Mod-
elElement is shown in Fig. 4. The slot named “InstanceOfMOF” indicates the instan-
tiation relation to the MOF Class construct. The following rule is used to represent the 
MOF Model: all instances of MOF Class construct and also their instances are repre-
sented as model elements. Instances of attributes and associations are represented as 
slots that connect the model elements. For simplicity, instances of associations are 
also represented as slots. The concept of Link is not used. 
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Fig. 5. Concise notation of the MOF Model (Fig. 4) as a graph of generic model elements 

In this paper a more concise notation will be used for showing model instances of 
the generic model in Fig. 2b. Fig. 5 shows the object diagram in Fig. 4 represented as 
a graph of generic model elements. Model elements are shown as rectangles that con-
tain an identifier of the element. Usually this identifier is the value of the slot ‘name’. 
Literals are also shown as rectangles containing the value enclosed by quotes. Slots 
are represented as arrows labeled with the name of the slot and pointing to the slot 
value. A more detailed representation of the MOF Model can be found in [8]. 

In the MOF Model there is no construct that defines instantiation relations. In our 
framework this relation is explicitly represented by a slot. From now on we will refer 
to that relation as instanceOfMOF. 

3.3   The instanceOf  Relation for the Relational Model 

As second example we represent a relational model as an instance of the generic 
model. Some approaches [2][4] reduce the number of levels in the MOF architecture 
to 3 by defining a given meta-model and the model of the M0 instances at the same 
level M2. Therefore the models and their instances are situated at level M1 and in-
stantiated with the standard MOF mechanism. The reduction of the levels, however, 
does not remove the presence of the second instanceOf relation defined within the 
meta-model. The authors of [2] identify the existence of these distinct instanceOf 
relations and distinguish between linguistic and ontological instantiations. In our 
examples instanceOfMOF relation is the linguistic instantiation whereas the instantia-
tion relation defined for a given modeling language is the ontological instantiation. 

 

Fig. 6. Relational model and its instance model both defined at level M2 
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Fig. 7. A particular relational schema and relational data both at level M1 represented as  
generic model elements 

We illustrate how this approach is represented in our framework by modeling  
relational databases. A relational model shown in Fig. 6 contains both the model of 
relational schemas (classes RelationalSchema, and FieldType) and the model of its 
instances (classes Table, Tuple and Field). The model is instantiated through the in-
stanceOfMOF mechanism and one example instance is shown in Fig. 7 following the 
notation used for the MOF Model. 

The data (the model elements aTuple, f1 and f2) that would reside at level M0 are 
now at level M1 and may be queried on the base of the constructs Tuple and Field. 
For instance, to access the value of field B one has to write the expression aTu-
ple.field select(name=”B”).value2 that returns ‘true’. A more natural way, however, 
is to use the relational schema of the tuple (represented by aSchema model element) 
that defines the fields A and B and to write the expression aTuple.B that reflects the 
ontological instantiation relation between aTuple and aSchema. This direct querying 
is not possible because aTuple does not have slot with name “B” created by the lin-
guistic instanceOfMOF. Therefore, some navigation over the graph should be specified 
to access the values of slots implied by the ontological instantiation. The ontological 
instanceOf relation is represented by the slots named ‘InstanceOf’ in Fig. 7. They are 
created by the linguistic MOF instantiation. 

This example illustrates the need that both instantiation mechanisms should be 
available. A single model element may conform to more than one meta-construct 
through different instanceOf relations that are defined differently and these relations 
may be used to query the slots of the model elements. Our framework allows an ex-
plicit representation of more than one instanceOf relation for a given model element, 
which lacks in the MOF architecture. 

3.4   Operations in Model Transformations 

In the introduction we described several transformation scenarios. We assume that a 
transformation is executed on an input model and results in an output model. Both 
models have meta-models. In this section, we describe four operations observed in 

                                                           
2 Object Constraint Language (OCL) [15] is used to specify the expression. 



 MISTRAL: A Language for Model Transformations 147 

 

model transformations: selection of model elements on the base of their meta-
constructs from which the elements are instantiated, instantiating model elements 
from a meta-construct, reading a slot value of an element, and setting the value of a 
slot. This list is not exhaustive, for instance, deletion of an element and operation 
invocation are not included in it. This paper focuses on the four operations mentioned 
above. Every operation is affected by the instantiation and generalization mechanisms 
specific for a modeling language. For every operation functions are identified and 
used to perform each operation. Different languages use different implementations of 
these functions. 

Selection of Model Elements on the Base of Their Meta-construct. instanceOf 
relations are explicitly represented in our framework. They are represented either by a 
slot that does not have a defining construct as in the example of the MOF Model or by 
a slot instantiated from a construct in a meta-model as in the example of the relational 
model. Moreover, because multiple instanceOf relations are possible for a model 
element we may select on the base of more than one meta-construct. This helps in 
dealing with both linguistic and ontological instantiations. 

With every meta-model we associate a function called meta defined over model 
elements in the input model. The function returns an element from the meta-model 
from which its argument is instantiated: 

meta(me: ModelElement): ModelElement 

An implementation of that function in the context of the MOF Model will return 
the value of the slot instanceOfMOF. In the context of the ontological instantiation in 
the relational model the function will return the value of the slot instanceOf (see  
Fig. 7). It should be noted that the function is defined only for model elements. We 
assume that the information about the meta-constructs used to create slots can be 
derived from the instantiation mechanism. 

Apart from selection on the base of the meta-construct another form of selection is 
possible. In many cases not only the instances of a given meta-construct are selected 
but also the instances of its specializations. This selection uses the generalization-
specialization hierarchy in the meta-model. Sometimes there are more than one hier-
archy (e.g. derivation by restriction and extension in XML Schema, extension among 
classes and extension among interfaces in Java). To model this situation and to enable 
the transformation language to deal with different generalization hierarchies we asso-
ciate every meta-model with a set of named relations representing its generalization 
relations. Every relation is associated with a function that for a given element in the 
meta-model returns all the specialized elements (direct and indirect): 

getSpecializedConstructs(me: ModelElement) : Set of ModelElement 

Instantiation of Model Elements from a Meta-construct. Instantiation mechanism 
is modeled as a function that takes a construct from a meta-model and produces a 
model element with empty slots: 

instantiate(meta-construct: ModelElement) : ModelElement 
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The implementation of that function is influenced by the generalization mechanism 
defined for a given meta-model since the generalization mechanism specifies how 
features are inherited from a more general construct. 

Accessing Slot Values of an Element. The slots of a model element are derived from 
its meta-construct based on the instantiation mechanism. 

Slots implied by one instantiation mechanism may differ from the slots implied by 
other mechanism as in the example of the relational model. The model element, how-
ever, has a single representation conforming to the generic model. Different instantia-
tions would create different representations. 

This raises two questions: first, what is the instantiation mechanism used to gener-
ate the representation of a model element and second, if the slots implied by an in-
stantiation are not directly presented how their values are obtained. The answer of the 
first question is that one instantiation mechanism is always chosen as default. In our 
approach we choose instanceOfMOF as default mechanism (or linguistic instantiation). 
To answer the second question we define a translation mechanism that obtains the slot 
values of slots implied by a given instantiation different from the default instantiation. 
This translation is implemented as a function that takes a model element and the name 
of a slot and returns the value of the slot, which is a set of model elements: 

getSlotValue(me: ModelElement, slotName: String) : Set of ModelElement 

Setting Values of a Slot. This operation is similar to the operation of accessing 
values of slots. The same two cases are presented here. 

If the slot exists in the representation of the element the value is set directly on the 
slot. If the slot comes from an instantiation different from the default instantiation a 
translation mechanism is required. Setting the slot value is treated as an in-place 
transformation over the model element whose slot is being set. Generalization mecha-
nism affects this operation in respect to the compatibility of the type of the value 
being set and the expected type of the value. The rules for type substitutability must 
be known when the transformation engine performs type checking of the value. 

Two functions are defined to perform this operation. The first function sets the 
value of the slot by taking into account how the slot is represented. The second func-
tion checks if two model elements represent compatible types: 

setValue(me: ModelElement, slotName: String, slotValue: Set of ModelElement) 

isCompatible(expectedType: ModelElement, actualtype: ModelElement): Boolean 

In summary, the four operations in model transformations are highly dependent on 
the instantiation and generalization mechanisms for a particular modeling language. 
We model the information required by the transformation engine to perform these 
four operations as a set of functions. Every meta-model provides its own implementa-
tion of these functions. We call the set of these functions a configuration. 

Functions in a configuration may be implemented in any language and may be 
linked to the transformation engine as an external library. For illustrative purposes we 
will show how these functions can be implemented as transformation rules written in 
our transformation language. During the execution of a transformation the engine will 
invoke these rules. Before giving an example of the implementation of the configura-
tion of the MOF Model and the relational model we will introduce the transformation 
language MISTRAL in the next section. 
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4   Transformation Language MISTRAL 

In this section, we describe a transformation language based on the idea of separation 
between the transformation language and the instantiation and generalization mecha-
nisms. The language is an extension of the one applied to XML processing described 
in [7]. 

4.1   Overview of the Language 

Fig. 8 shows the basic concepts in the transformation environment in which the lan-
guage is used.  

 

Fig. 8. Overall design of the transformation environment 

A transformation engine transforms a source model to a target model by executing 
a transformation specification. A transformation specification is written in the trans-
formation language being described here and is based on the meta-models of the 
source and the target models and the configurations of these meta-models. Source and 
target models must be associated to at least one meta-model. This requirement is 
always fulfilled since all models conform implicitly to the generic model of the mod-
eling space. The meta-models and their configurations are passed as input to the trans-
formation engine. The engine can only create instances of the constructs in the ge-
neric model, i.e. model elements and slots. The transformation designer, however, can 
specify the transformation against the meta-constructs in the meta-models. Based on 
the configurations of the meta-models the engine performs the operations analyzed in 
the previous section that ultimately result in creating model element and slot instances 
in the target. 

A transformation specification is a set of rules. There are two types of rules: model 
element rules and slot rules. Model element rules create elements in the target model. 
Slot rules are used to relate the elements by setting their slot values. Both types of 
rules have rule source that selects elements in the source model. 

4.2   Example: The Configuration of the MOF Model 

The language is presented on the base of an example that implements the configura-
tion functions for the MOF Model. Only two functions are implemented here: instan-
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tiate and getSpecializedConstructs. The following 4 model element rules implement 
the instantiation mechanism in the MOF Model. The keywords of the language are 
shown in bold. 

The instantiate model element rule implements the instantiation mechanism for the 
MOF Model. It creates a model element from a non-abstract class. Slots are obtained 
from the derived sets of attributes and outgoing associations of the class. These sets 
contain the attributes and outgoing associations defined in the class and also the inher-
ited ones from its parent. Derived sets are created by the rule DerivedConstructsFor-
Class. We assume that name collisions do not occur. Slots are created by the rules 
MOFAttributeToSlot and MOFAssociationToSlot respectively. 

instantiate ModelElementRule{ 
  source [c:Class, condition {c.isAbstract=false}] 
  target [instance: ModelElement {slots=slotRulesValue->union(instSlot)}, 
             instSlot: Slot {name=’instanceOfMOF’, value=c}] 
  SlotRules { 
    attributeSlots 
    source [a:Attribute=target (c, derivedAttributes)] 
    target   [slots=MOFAttributeToSlot(a)] 
     
    associationSlots 
    source  [assoc:Association=target(c, derivedAssociations)] 
    target    [slots=MOFAssociationToSlot(assoc)] 
  } 
} 

 

DerivedConstructsForClass ModelElementRule{ 
  source [c: Class link-to(derivedAttributes, derivedAssociations)] 
  target [derivedAttributes: Set{elements},  
              derivedAssociations: Set{elements}] 
  SlotRules { 
    ownAttributes 
    source [a: Attributes=c.attributes] 
    target [derivedAttributes.elements=a] 
 
    attributesFromParent 
    target [derivedAttributes.elements] 
    alt { source [parent:Class=c.supertype]  
           target [derivedAttributes.elements=target(parent, derivedAttributes)]  } 
    alt { target [derivedAttributes.elements=Set[]] } 
 
    ownAssociations 
    source [assoc:Association, condition{assoc.from.type=c}] 
    target [derivedAssociations.elements=assoc] 
 
    associationsFromParent 
    target [derivedAssociations.elements] 
    alt {source [parent:Class=c.supertype]  
           target [derivedAssociations.elements=target(parent, derivedAssociations)]  } 
    alt { target [derivedAssociations.elements=Set[]] } 
  } 
} 
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MOFAttributeToSlot ModelElementRule{ 
  source [a:Attribute] 
  target   [Slot {name=a.name}] 
} 
 
MOFAssociationToSlot ModelElementRule{ 
  source [assoc:Association] 
  target [Slot {name=assoc.to.name}] 
} 

Fig. 9 illustrates the dependencies among the rules. Rules are shown as ovals and 
relations among them are shown as labeled arrows. A rule with an outgoing arrow 
obtains values for the variables denoted by the label of the arrow from the rule at 
which the arrow is pointing. 

 

Fig. 9. Dependencies among the transformation rules 

The following rule creates a set of all the classes that directly or indirectly inherit 
from a given class passed as a source of the rule and therefore implements the func-
tion getSpecializedConstructs. 

getSpecializedConstructs ModelElementRule{ 
  source [c: Class] 
  target [result: Set{elements=slotRulesValue->union(c)}] 
 
  SlotRules{ 
    Elements 
    source [s: Class, condition{s.supertype=c}] 
    target [result.elements=getSpecializedConstructs(s)] 
  } 
} 

This rule is an example of a recursive rule that for a given class determines all di-
rect specializations and makes a union of their specialized constructs. 

4.3   Transformation Language Syntax 

In this section, we describe the syntax of some important constructs in the transforma-
tion language that were used in the previous example. 
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Model Element Rules. Model element rules create new elements in the target model 
or modify existing ones in the source model. 

The creation of new elements is done in two ways: by instantiating the constructs 
from the generic model in Fig. 2 and by instantiating some meta-constructs from the 
target meta-model. Only the constructs in the generic model can be directly instanti-
ated.  When a meta-construct from the target meta-model has to be instantiated the 
function instantiate that implements that instantiation is invoked and results in instan-
tiations of the constructs in the generic model. 

The syntax of model element rules is specified below in a pseudo EBNF notation. 
Non-terminals are in italic. 

ruleName ModelElementRule InputParameters? { 
   RuleSource 
   target [Action +] 
   SlotRule* 
} 

Every model element rule has a name, a source, a target, an optional list of input 
parameters and is associated with a number of slot rules. Model element rules specify 
a correspondence between elements in the rule source and elements in the rule target. 
When a rule is executed elements in the rule target are instantiated for every tuple that 
matches the rule source. 

The target of a model element rule contains a set of actions. Two types of actions 
are supported: instantiation and update. Every instantiation specifies a meta-construct 
in the target meta-model or a type from OCL. The element created by an instantiation 
might be assigned to an identifier. Instantiations enumerate the names of the slots that 
will be assigned with value after the instantiation. Slot values are determined from an 
optional expression specified in the slot list and an optional set of slot rules. 

In the example, the rule instantiate specifies two instantiation actions based on 
ModelElement and Slot constructs respectively. The second instantiation is assigned 
to the identifier instSlot. All slots are assigned with expressions. Expressions may 
contain variables defined in the source of the rule (e.g. value=c) or assigned to the 
other instantiations in the same rule. 

The second type of action that can be used in the rule target is the update action. It 
modifies the slot values of model elements selected by the rule source. 

The transformation language supports single inheritance among model element 
rules. The inheriting rule inherits from the parent rule its source, target and the associ-
ated slot rules. 

Rule Source. Rule source specifies the characteristics of the elements in the source 
model that will be selected by a transformation rule. Rule source is evaluated to a set 
of tuples containing elements in the source model. The syntax of the rule source is 
given below. 

source [ Component +, (condition {BooleanExpressionInOCL})? ] 

A rule source enumerates at least one component. An optional condition may be im-
posed on the components. The components are two kinds: an identifier that uniquely 
identifies an element in the source model or a variable that can be bound to more than 
one source element. Variables have a type which can be a model element from the 
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meta-model (i.e. a meta-construct) or one of the primitive and collection types avail-
able in Object Constraints Language (OCL). If the type is a meta-construct then the 
variable matches its instances in the source model. The Cartesian product of the 
matches for all the variables forms a set of tuples filtered out by the condition of the 
source. 

The source expression of instantiate model element rule contains a variable c that 
will be bound to instances of Class. The condition constrains the set of model ele-
ments that will be bound to c to those classes that are not abstract: 

source [c: Class, condition{c.isAbstract=false}] 

It is also possible to select elements instances of the specializations of a given 
meta-construct. In general, more than one generalization hierarchy may exist in a 
given meta-model. The names of the hierarchies must be defined in the configuration 
of the meta-model. These names may be used to specify a selection. A source rule that 
selects instances of a given class aClass and also instances of all its subclasses is 
specified below. The keyword select is used in combination with the name of the 
relation: 

source [c: aClass select sub-classes] 

Slot Rules. Slot rules are always associated to a model element rule and specify how 
to obtain the values of the slots of its instantiations. The syntax of the slot rules is 
given below: 

ruleName RuleSource target[(slotName=Expression)+ ] 

Every slot rule has a name, a source and a target. Rule target enumerates the slots 
to be set up with a value. Rule source specifies the elements in the source model that 
will be used to obtain the value of the slots. A given slot may have more than one slot 
rule for the calculation of the value. 

There are two forms of slot rules: single form and form with alternatives. Slot rules 
in single form have only one source expression. It is evaluated in the context of the 
current matching of the model element rule that owns the slot rule. The source of the 
slot rule may refer to the variables defined in the owning model element rule. It is 
often the case that the values of variables in the slot rule source are determined rela-
tively to the model elements that match the owner rule. The values of the slots are 
determined by evaluating expressions over the variables in the rule source. 

In instantiate model element rule the value of the slot named slots in the Mod-
elElement instantiation is calculated by two slot rules named attributeSlots and asso-
ciationSlots. This is indicated by including the slot name in the target of a slot rule.  

Slot rules in the form with alternatives specify multiple alternative sources. They 
are evaluated in the order of their appearance and the first source that results in a non-
empty set is used to determine the values of the slots in the target. It is possible to 
specify an alternative without a source in the end of the list with alternatives. It is 
used if none of the preceding alternatives is applied. The slot rule attributesFromPar-
ent belonging to DerivedConstructsForClass rule is an example of a slot rule in form 
with alternatives. 
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To determine the value of a slot the transformation engine first evaluates the ex-
pression assigned to the slot in the instantiation. If there is no expression then the 
value is obtained by executing the associated slot rules. For every match of the source 
of a slot rule the expression assigned to the slot is evaluated. Results obtained from 
the matches are united in a set. The sets obtained from the slot rules are united and the 
result is used as value of the slot. Multiplicity and type constraints are checked. Ex-
pressions used in the instantiations may use the special variable slotRulesValue that 
contains the result of the execution of the slot rules. 

Linking Source and Target Elements. Whenever a model element rule is executed 
the execution engine establishes an association link between the elements matched by 
the source and the elements instantiated by the target of the rule. 

The created target model elements may be used as slot values of other model ele-
ments created by other rules. They are accessed by querying the source elements for 
the associated elements in the target model. The linking is done by the link-to con-
struct that instructs the transformation engine to establish a link between an element 
of the source and the instantiations in the target of the rule. 

In DerivedConstructsForClass rule the classes selected by the source are linked to 
the sets derivedAttributes and derivedAssociations. The built-in function target may 
be used to query a source element for the elements linked to it. An example usage of 
that function can be seen in the slot rules of instantiate. 

Invoking Rules. By default, model element rules are executed exactly once on every 
match of their source. It is also possible to invoke a model element rule explicitly by 
name over a given source element and to use the result in expressions. 

To create new slots every time when a model element is instantiated from a class 
we explicitly invoke MOFAttributeToSlot rule in the expression slots = MOFAttrib-
uteToSlot(a) in the attributeSlots slot rule. The same approach is used in associa-
tionSlots slot rule. 

4.4   Transformation Engine Prototype 

This section describes a prototype of a transformation engine developed for a previ-
ous version of the transformation language MISTRAL. The previous version of the 
language is designed for XML processing. A description of the approach for XML 
processing based on model transformations can be found in [7]. The approach reflects 
the scenario shown in Fig. 1c. The language is coupled with XML Schema Meta-
model and Java Meta-model. This is the main difference with the current version of 
language MISTRAL. The two languages employ the same constructs presented in this 
paper: model element rules and slot rules. 

The implementation of the transformation engine for the language applied for 
XML processing served as a proof of concept for the algorithms of rule execution. We 
give a short description of the architecture of the transformation engine. More detailed 
description of the architecture and implementation of the engine accompanied by 
several case studies are given in [17]. 
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Fig. 10. Architecture of the prototype of the transformation engine 

Fig. 10 shows the components in the architecture of the transformation engine pro-
totype. An input XML Document is parsed by XML Parser, which generates XML 
Document Internal Representation used by other components in the engine. Trans-
formationDefinition is parsed by Parser, which generates Transformation Definition 
Internal Representation. This representation is checked by Preprocessor. Preproces-
sor applies Well-formedness Checker and Type Checker to perform the checking. 
Transformation is executed by Rule Execution Engine that invokes Source Pattern 
Matcher to extract nodes from XML Document Internal Representation. Pattern 
matcher uses information from Source XML Schema. Rule Execution Engine uses 
Target Classes to generate the output Objects. 

5   Defining the Configuration of the Relational Model 

In this section, we present an example implementation of some of the functions iden-
tified in section 3.4. For illustrative purposes functions are implemented as transfor-
mation rules written in the transformation language presented in section 4. The instan-
tiation mechanism of the relational model (function instantiate) is defined below. 

In this transformation the targets are not the generic classes ModelElement and Slot 
as in the definition of the instantiation for the MOF Model. Instead Tuple and Field 
are used and these classes are instantiated through the MOF instantiation defined in 
the previous section. The transformation engine will use the rule instantiate defined 
for the MOF Model to instantiate Tuple and Field and will build the underlying repre-
sentation. 
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instantiate ModelElementRule{ 
  source [s:RelationalSchema] 
  target [Tuple{field, instanceOf =s}] 
 
  SlotRules{ 
    Fields 

          source [f:FieldType=s.fieldTypes] 
     target [field=FieldTypeInstantiation(f)] 
  } 
} 
 
FieldTypeInstantiation ModelElementRule{ 

       source [ft:FieldType] 
  target [Field{name=ft.name, instanceOf=ft}] 
} 

The next rule implements the function meta that returns the meta-construct for a 
given tuple or field. Note that it does not distinguish between instances of Tuple and 
Field since the generic class ModelElement is used. 

meta ModelElementRule { 
  source [me: ModelElement, slot=me.slots, condition{slot.name=’instanceOf’}] 
  target [meta-construct: ModelElement=slot.value]  
} 

We also specify a transformation rule used for slot value access that implements 
the function getSlotValue: 

getSlotValue ModelElementRule inputParameters [slotName: String]{ 
  source [context: Tuple, f:Field=context.field, condition {f.name=slotName}] 
  target [result: Set=f.value] 
} 

This rule is executed on a tuple supplied by the transformation engine and bound to 
the variable context. The rule navigates over the fields and selects a field with name 
equal to the input parameter slotName. Selection and slot value access is based on the 
functions defined for the MOF Model. 

Setting slot values is implemented as an in-place transformation over tuples. The 
rule takes as input parameters the slot name and the value to be assigned. The source 
of the rule (the variable context) is supplied by the transformation engine. Then the 
slot f with name ‘value’ will be set. 

setSlotValue ModelElementRule 
  inputParameters [slotName:String, newValue:Set]{ 
  source [context:Tuple, f:Field=context.field, condition {f.name=slotName}] 
  target [update f {value=newValue}] 

} 

With this example we have shown how to use the transformation language for the 
specification of transformation rules that implement some of the functions in the con-
figuration of relational model. 
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6   Related Work 

Meta-modeling architectures based on a common representation of the elements in 
different levels can be found in other domains of computer science. RDF Schema [6] 
defines a three level architecture where all constructs are represented as triples ac-
cording to the RDF data model [3]. The approach for meta-modeling described in [5] 
also has three levels and 5 types of instantiation mechanisms called conformance 
relationships. The framework uses a transformation language based on logical formu-
las. Transformations between any levels are possible. The authors of [18] propose a 
multilevel meta-modeling framework where instantiation and generalization are treated 
in a uniform way. In [1] the instantiation mechanism is explicitly defined as a function 
that can be applied on a model at any level. That function resembles the MOF instantia-
tion mechanism and is reused also in the UML meta-model. The paper does not study 
how other instantiation mechanisms would be defined in that framework. 

7   Conclusions 

We presented an approach for defining a model transformation language that allows 
specifying transformations between models residing at arbitrary level in the MOF 
architecture. Our language treats the MOF architecture as a homogeneous modeling 
space consisting of model elements all represented by the same generic structure. 
Different instanceOf and generalization relations may be defined within that space. 
These relations have a significant impact on the transformation language. The primary 
design goal for our transformation language is separation between the language and 
specific instantiation and generalization mechanisms. The latter are implemented as 
functions linked to the transformation engine. We showed examples of how these 
functions themselves can be implemented in the transformation language. 

Our approach illustrates the need for a systematic definition of modeling languages 
within the MOF architecture and one particular example how transformation technol-
ogy can benefit from that. 

As a next step for research we plan to study the representation of various UML 
profiles within the framework presented in the paper. 
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Abstract. A key issue in the MDA approach is the transformation of platform 
independent models to platform specific models. Before transforming to a 
platform specific model, however, it is necessary to select the appropriate 
platform. Various platforms exist with different properties and the selection of 
the appropriate platform for the given application requirements is not trivial. An 
inappropriate selection of a platform, though, may easily lead to unnecessary 
loss of resources and lower the efficiency of the application development. 
Unfortunately, the selection of platforms in MDA is currently implicit and lacks 
systematic support. We propose to integrate so-called platform selection rules in 
the MDA approach for systematic selection of platforms. The platform selection 
rules are based on platform domain models that are derived through domain 
analysis techniques. We show that the selection of platforms is important 
throughout the whole MDA process and discuss the integration of the platform 
selection rules in the MDA approach. The platform selection rules have been 
implemented in the prototypical tool MDA Selector that provides automated 
support for the selection of a platform. The presented ideas are illustrated for a 
stock trading system.  

1   Introduction 

One of the key motivations for Model Driven Architecture (MDA) is the existence of 
too many platforms, and too many conflicting implementation requirements, reducing 
the interoperability, portability and reuse of the applications [13]. To this end, MDA 
explicitly separates the functionality from platform specific concerns and provides 
Computation Independent Models (CIMs), Platform Independent Models (PIMs), 
Platform Specific Models (PSMs) and the code (model). One of the key issues is then 
the transformation among these models. In general, the transformations concern the 
mapping from PIM to PSM, from PSM to PSM, and from PSM to code.  Several 
transformation techniques have been proposed between the various models and this is 
actually one of the active research topics.  

As such, the development of a system in MDA starts with defining the computation 
independent model, which is mapped to a platform independent model, and by a 
series of transformations gradually the platform specific properties are included 
through the platform specific models, eventually resulting in the final code. 



160 B. Tekinerdo an, S. Bilir, and C. Abatlevi 

 

Although, the mapping to different models and the related transformations have 
gained more interest, the selection of particular platform is not explicitly addressed. 
During the last years, different platforms have been proposed such as CORBA, .NET 
and J2EE. Each project may have its own requirements and constraints and depending 
on the project parameters, different types of platforms may be required. It is important 
that the right platform is selected to meet the project requirements and to avoid 
unnecessary loss of resources because of maintenance problems later on. Selecting an 
inappropriate platform will require redoing the whole transformation process between 
the different models including PIM to PSM, PSM to PSM and PSM to code.  

Selecting a platform, however, is not a trivial process. Each platform usually 
addresses different properties and selecting a platform requires a broad understanding 
of the available platforms. Currently, in MDA the selection of platforms is basically 
implicit, and no systematic support is provided to guide the software engineer in 
selecting the right platforms.  

We propose to integrate so-called platform selection rules for selecting an 
appropriate platform in the MDA approach. Platform selection rules are derived from 
the platform domain model. The platform domain model defines the commonality and 
variability of a set of platforms and is derived using domain analysis techniques. The 
platform selection rules help to determine to which extent the platform is suitable or 
not.  

The approach is generic, yet as an example we define the rules for selecting .NET 
and J2EE platforms. We illustrate our ideas for a stock trading system and describe a 
prototypical tool MDA Selector, which implements the platform selection rules. 

The remainder of this paper is organized as follows: Section 2 introduces the 
example case stock trading system that is used throughout the paper to discuss the 
problems and the solutions. Section 3 provides the background on transformation 
rules and additionally introduces the notion of platform selection rules. Section 4 
discusses the approach for extracting and specifying the platform selection rules. 
Section 5 discusses how platform selection rules can be integrated in the MDA 
approach. Section 6 presents the prototypical tool that implements the platform 
selection rules for J2EE and .NET. Section 7 provides the related work and finally 
section 8 presents the conclusions. 

2   Example: Stock Trading System 

Development of a system in MDA proceeds from CIM to PIM, from PIM to PSM, 
and from PSM to code. In the following, we will show the CIM and the PIM for a 
stock trading system and then discuss the motivation for systematic selection of 
platforms.  

2.1   Computation Independent Model 

In the stock trading system, the client requests the stockbroker to enter a buy or sell 
order for a certain number of stocks. An order results in a deal when a matching bid 
of the opposite type is present. The system automatically performs the possible deals 
and entails several bookkeeping actions.  
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Enter Buy OrderStockbroker

Enter Sell Order

AnalyzeRisk

AnalyzePortfolio

AnalyzeHistory

Give Buy Order Client 

Give Sell Order  

Fig. 1. Computation Independent Model for Trading System (Business Model) 

Figure 1 represents (part of the) computation independent (business) model of the 
stock trading system. In the use case, there are three two actors: StockBroker and 
Client. The actor StockBroker performs the use cases Analyze Risk, Analyze History, 
Analyze Portfolio, Enter Buy Order, Enter Sell Order. The actor Client can apply the 
use cases Analyze Risk, Analyze Portfolio, Analyze History, Give Sell Order and Give 
Buy Order. 

2.2   Platform Independent Model 

The CIM does not include any computational issues and defines the solution from a 
requirements and business perspective. The PIM provides a model of the application 
including the computational aspects but refraining from the platform specific aspects. 
Fig. 2 shows the (simplified) PIM for the stock trading system. 

 

Fig. 2. (Simplified) PIM for stock trading system 
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2.3   Selection of Platforms 

The representation of the platform independent model is important to support the 
quality factors of reuse, interoperability and portability to different platforms. 
However, for the more concrete implementation it is necessary that a platform is 
selected after which the PIM is mapped to a PSM including the specific properties of 
the selected platform. 

For the stock trading system, the first important question is then which platform to 
select. There are various platforms and it is not trivial to select a platform that best fits 
the needs of the stock trading system. All of the existing platforms have different 
properties and in principle can be selected to realize the PSM. Albeit any changes to 
the platform will not influence the PIM in the MDA perspective, the selection of a 
given platform will have a serious impact on the platform specific model. If a non-
optimal platform is selected this will directly impact the PSMs which need to be 
generated again. If the right transformation rules exist, and if these are automated then 
the generation of PSMs might be better supported. Nevertheless, it is not efficient to 
continuously rely on a trial-and-error approach until the right platform has been 
selected, and likewise it is worthwhile to provide a systematic approach, which 
supports the decision on a platform. Unfortunately, this is not explicit in MDA yet. 
The following sections elaborate on this issue. 

3   Transformation Rules and Platform Selection Rules  

Several approaches have been proposed for mapping PIM to PSM, such as use of 
templates, marks, and patterns. We can categorize all these approaches as transfor- 
mations. Within this context, Kleppe et. al. provide the following definitions [10]: 

Transformation is the automatic generation of a target model from a source 
model, according to a transformation definition.  

A Transformation Definition is a set of transformation rules that together 
describe how a model in the source language can be transformed into a model in the 
target language.  

A Transformation Rule is a description of how one or more constructs in the 
source language can be transformed into one or more constructs in the target 
language.  

All these definitions and tools are primarily focused on transformation of the 
models down to code. Although MDA improves the interoperability and portability of 
the systems, it does not explicitly define which platform to choose for a given set of 
project requirements, though. In fact, this is actually the strength of MDA; it does not 
commit to a particular platform.  

Nevertheless, sooner or later a platform must be selected to realize the system. 
Since the selection of the platform is not explicit this is usually done in an informal 
and less systematic manner.  

Complementary and in alignment to the above definitions we introduce the 
definitions that are required for selecting platforms:  

Platform Selection is the automatic selection of a platform according to the input 
from the application requirements. 
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Fig. 3. Platform selection inputs 

Platform Selection Definition is a set of selection rules that together describe the 
selection of platforms, 

Platform Selection Rule is a description on the selection of a particular platform 
based on a given property.  

The idea of selecting platforms is given in Fig. 3. 
The rules for selecting platforms are different from existing transformation rules in 

two perspectives. First, the rules are defined before the transformation rules. Second, 
the rules do not transform any model but only support the system designer in the 
selection of the platform. Altogether, we think that these platform selection rules are 
complementary to the existing transformation rules.  

4   Approach for Defining Platform Selection Rules 

Intuitively, it seems sound to support the software engineer in selecting a platform 
based on a given set of rules. The question of course is how to define these rules. For 
this, we propose to apply domain analysis techniques. In section 4.1, we will discuss 
the approach for defining a platform domain model using domain analysis techniques. 
Based on this platform domain model, the approach for deriving platform selection 
rules will be explained in section 4.2. Finally, section 4.3 discusses the selection of 
platforms based on the defined rules and the project constraints. 

4.1   Defining a Platform Domain Model 

Domain analysis can be defined as the process of identifying, capturing and 
organizing domain knowledge about the problem domain with the purpose of making 
it reusable when creating new systems [1]. Domain analysis focuses on a given 
domain and aims to represent this domain in a reusable format. The UML glossary 
provides the following definition of the term domain [8]:  

Domain: An area of knowledge or activity characterized by a set of concepts and 
terminology understood by practitioners in that area.  

Conventional domain analysis methods consist generally of the activities Domain 
Scoping and Domain Modeling [1]. Domain Scoping identifies the domains of 
interest, the stakeholders, and their goals, and defines the scope of the domain. 
Domain Modeling is the activity for representing the domain, or the domain model. 
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The domain model can be represented in different forms such as object-oriented 
language, algebraic specifications, rules, conceptual models etc. Typically a domain 
model is formed through a commonality and variability analysis to concepts in the 
domain.  

Our focus in this paper is on modeling platforms for reuse. The MDA Guide 
provides the following definition for platform [13]:  

Platform: a set of subsystems and technologies that provide a coherent set of 
functionality through interfaces and specified usage patterns, which any application 
supported by that platform can use without concern for the details of how the 
functionality provided by the platform is implemented. 

The MDA guide further classifies platforms into generic platform types, 
technology specific platform types and vendor specific platform types. The discussion 
of our study is independent of these classifications. 

A domain for our purposes represents the area of knowledge on the set of platforms 
that we are interested in. We term this as the platform domain model. Related to 
this, in the MDA Guide the notion of platform model is defined [13]: 

Platform model provides a set of technical concepts, representing the different 
kinds of parts that make up a platform and the services provided by that platform.  

This definition focuses implicitly on the modeling of a single platform. With 
platform domain model, we define a model that represents one or more platforms. For 
this, it is required to model the common properties and the variant properties of the 
corresponding alternative platforms. To this end, we apply feature modeling, which is 
a well-known technique in domain analysis [6]. Feature modeling results in a feature 
model, which consists of a feature diagram and additional semantic information such 
as descriptions of features, rationale of features, etc. A feature diagram represents a 
hierarchical representation of the features of a system. The root of a feature diagram 
represents a concept.  

Fig. 4 presents the approach for modeling platforms. In the first step, it is decided 
which platforms one is interested in and the corresponding domains are identified. 
This is actually the domain scoping for platforms. As an example, one might decide to 
focus on Corba, .NET  and J2EE. Once the platforms are known, the corresponding 
platform domain model will be developed. An appropriate platform domain model 
that meets the application requirements might already exist in the literature. If no 
suitable platform model exists then this is defined using commonality and variability 
analysis to the knowledge sources on the corresponding platforms. The knowledge 
sources might include textbooks, technical papers, human experts or systems, which 
implement the corresponding pattern. Once the platform domain model is developed 
it will be evaluated based on the application requirements and the platform 
information. If the evaluation is passed then the platform domain model can be 
utilized. 

Fig. 5 presents, for example, a feature diagram for platforms as a result of domain 
analysis to J2EE and .NET platforms. It describes a platform as consisting of Vendor, 
Operating System, Architecture, Language and Services features. This feature model 
has been derived after a commonality and variability analysis to knowledge sources 
on .NET and J2EE [14][15] [16].  
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Fig. 4. Process for deriving platform domain model 
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Table 1. Properties  for .NET Platform Table 2. Properties  of J2EE Platform 

P1. Vendor is Microsoft 

P2. Operating System is Windows 

P3. Presentation Access is ASP.Net, 
Windows Forms, Web Services 

P4. For Database Connectivity ADO.Net 
and SOAP is used.   

P5. Business logic is provided through 
.NET Managed components and 
COM Queued components 

P6. Requires Common Language 
Runtime (CLR) run-time engine. 

P7. Source code is written in C#. 

P8. Supports transaction and 
authentication services 

P9. …. 

P1. Vendor is independent (more than 30) 

P2. Operating System is independent 

P3. Presentation Access is JSP, JFC, Web 
Services 

P4. For Database connectivity Java 
Database Connectivity (JDBC) 
protocol, Java Connector Architecture 
(JCA), Java Messaging Service 
(JMS) and SOAP is used.  

P5. Business logic is provided through 
Session Enterprise JavaBeans, Entity 
Enterprise JavaBeans and Message 
Driven Beans. 

P6. Requires Java Runtime Engine (JRE) 

P7. Source Code is written in Java 

P8. …. 

For deriving platform selection rules, we represent the platform domain model as a 
set of platform properties. A platform property is defined as a description of the 
feature of a platform and as such, is directly derived from the feature diagram. For 
example, Table 1 and Table 2 represent (a set of) properties for .NET and J2EE 
platforms, which have been derived from the feature diagram in Fig. 5. 

4.2   Extracting the Rules from Platform Domain Model 

Once the platform domain model has been derived it can already be manually utilized 
in selecting the appropriate platform. For automating the rules a further formalization 
is required. We do this by mapping the properties to the platform selection rules. The 
platform selection rules are expressed using conditional statements in the form IF 
<condition> THEN <consequent>.  For example property P1 in Table 1 and Table 2 
lead to the rules R1 and R2, respectively in Table 3. Note that the list is not 
comprehensive due to space limitations. 

4.3   Selecting Platforms Using Application Constraints 

The platform selection rules represent the general cases for selecting platforms. For 
selecting a platform we need to define the corresponding application constraints as it 
was discussed in section 3 and illustrated in Fig. 3. Each constraint can trigger a rule in 
the rule definition. As such, for a given set of constraints, a set of rules will be 
triggered. The triggering of a rule means that the condition requested by the 
constraints matches the condition of the platform selection rule. Assume that, for 
example, the constraints as defined in Table 4 are specified for the stock trading 
system. 
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Table 3. Heuristic Rules for Platform Selection for J2EE and .NET 

R1. IF the vendor should be independent  
THEN  select the platform J2EE 

R2. IF the vendor should be Microsoft  
THEN  select the platform .NET 

R3. IF the platform should be independent from the operating system 
THEN select the platform J2EE 

R4. IF the platform should have Windows operating system 
THEN select platform .NET 

R5. IF JVM run-time engine is installed/required  
THEN  select the platform J2EE 

R6. IF CLR run-time engine is installed/required  
THEN  select the platform .NET 

R7. IF the application will be implemented in Java  
THEN  select the platform J2EE 

R8. IF the application will be implemented in C#  
THEN  select the platform .NET 

R9. IF transaction and authentication support is required  
THEN  select the platform J2EE 

R10. IF database access with JDBC is required  
THEN  select the platform J2EE 

R11. IF database access with ADO.NET is required 
THEN  select the platform J2EE 

R12. IF ASP.NET is required as a web-tier component  
THEN  select the platform .NET 

R13. …. 

These constraints trigger five rules R3, R6, R7 and R9 in Table 3. This leads to an 
indecisive result to select J2EE (for R3, R7 and R9) and .NET (for R6). As in this 
case, very often the application requirements do not lead to a single possible platform. 
The reason for this is, firstly that the corresponding platforms share some common 
properties, and secondly, the application requirements might be conflicting itself. To 
support the decision process in case of conflicts, we apply the prioritization of the 
constraints by assigning each of these a value between 1 and 9. Hereby the value 1 is 
defined as a supportive but least important constraint, whereas 9 represent a very 
strong decisive constraint. Note that the constraints C1 to C4 in Table 4 correspond to 
the elements in the feature diagram as defined in Fig. 5. In principle, it would be 
possible to annotate the priorities to the feature diagram as well. On the other hand, 
the priorities for each project might change and in that sense, it is more appropriate to 
separate the priorities from the feature diagram. 

The priority values are assigned to the triggered rules. The decision for each 
platform depends then on the number of fired rules and the values of the constraints. 
Therefore, for the constraints in Table 4 this means that the total score for J2EE is 
9+8+8=27 and the score for .NET is 5. This information could be used for the final 
decision or for a closer look at the conflicting requirements. In fact, the prioritization 
and the policy for selecting platforms based on these scores might be refined. What is 
important here is that this decision is made explicit. 
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Table 4. Constraints and Priorities for Stock Trading Application 

Constraint Priority 

C1. The application should work in all 
environments so the platform must be 
operating system independent. 

9 

C2. The language which will be used for 
implementation must be in Java 5 

C3. The run time engine should be CLR. 8 
C4. Transactions and authentication are required. 8 

5   Integrating Selection of Platforms in the MDA Pattern  

Fig. 6a illustrates the integration of the platform selection rules in the MDA pattern. 
The drawing builds on the pattern as defined in the MDA Guide [13]. The rectangles 
represent either the platform independent models or the platform specific models, the 
arrows represent transformations and selections. In fact, the selection of platforms 
appears to be complementary to the MDA pattern. In the current MDA pattern the 
selection is implicit. Fig. 6a makes this explicit by adding an operation which selects 
(and models) the platform. Similar to the initial MDA pattern the drawing is intended 
to be suggestive and generic. The platform independent model together with the 
selection of platform and the corresponding information on the platforms are 
combined to produce a platform specific model. There can be many ways in which 
transformations may be done. The selection is based on the approach as defined in the 
previous sections. 

It should be noted that the terms PIM and PSM are just relative terms and it is 
difficult to draw a strict line between platform independent and platform specific 
model. In fact, a platform specific model can function as a platform independent 
model for a next stage. For example, the upper PIM that is independent of many 
platform choices, could be mapped to a PSM which is specific to middleware 
platforms. However, the transformation could be carried out so that the PSM is 
independent of the particular component platforms. 

This can also be derived from the given example case. The original platform 
independent model is first mapped to a J2EE platform specific model, which remains 
independent of the choice of a particular component platform in J2EE. In the given 
example case, the J2EE-specific model can thus be considered as a PIM as well. 
There are three basic component platforms in J2EE: JSP (Java Servlet Pages), Servlet 
and EJB (Enterprise Java Beans). Before transforming the J2EE specific platform 
independent model, we have to select the specific component platform in J2EE. This 
process is illustrated in Fig. 6b. Note that the extended MDA pattern as defined in Fig. 
6a is applied twice in Fig. 6b.  

Selecting the component platforms of the J2EE platform requires defining the 
corresponding platform selection rules. In principle, this is the same process as 
defined in the previous sections, and we do not elaborate further on this.   
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Fig. 6. The integration of platform selection rules in the MDA pattern 

6   Platform Selection Tool  

Since the platform selection rules have been formalized, they can be easily 
implemented in a tool to provide automated support for the decision of a platform. We 
have implemented a prototypical tool environment for selecting a platform for a given 
PIM. The tool environment is called MDA Selector. A snapshot of this tool is given in 
Fig. 7. MDA Selector simply implements the rules that have been derived from the 
platform domain model. The tool starts by prompting the user in order to determine 
the middleware platform by using the check boxes, which represents the properties for 
different platforms. In addition, each property can be assigned a number between 1 
and 9. If all the required properties are checked and the numbers to these properties 
have been assigned, then the user of the tool can click the action button Decide, to get 
the decision on the platform. The decision is shown in the right corner using colored 
rectangles. The size of the rectangle indicates the degree of preference for the given 
platform. The rules themselves have been implemented as objects with the attributes 
condition, platform and value. The attribute condition represents the condition of the 
rule, the attribute platform refers to the selected platform for the condition, and the 
attribute value represents the number assigned to the rule. Upon pressing the Decide 
button the algorithm for selecting the platform is executed. Hereby, the selected 
properties are matched against the implemented rules. In case a selected property 
matches the condition of a rule, the rule will be triggered, that is the value for the rule 
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Fig. 7. Platform Selection Tool 

is set to the entered value for the property and the degree for the corresponding 
platform is updated. The action button Report provides additional information on the 
result of the selection. The tool is implemented in Visualworks 3.0 and currently 
includes a simple, though, effective implementation. 

7   Related Work 

The MDA guide [13] provides a definition of platform model but no explicit process 
for deriving the platform model is given. We adopt domain analysis techniques for 
systematically defining platform models. In [3] and [19], the notion of Platform 
Description Model is presented, which is similar to our notion of platform model 
since both are representations of the corresponding platform. In [4] the Platform 
Model is expressed at a conceptual level and does not specifically represent a formal 
model. In all of these approaches, the term platform model is utilized in transforming 
a PIM to a PSM. In our approach, the platform model is used to derive the rules for 
selecting the platforms. Later on, the platform model can still be used as an input to 
the transformation process.  

In [12] exploration and selection of alternative transformation models using 
algebraic techniques is presented. Hereby the possible set of transformation models is 
represented as transformation spaces. In our approach, we focus on modeling the 
heuristic rules for selecting platform models. As such, both approaches seem to be 
complementary to each other.  

In [7] the authors discuss the relation between MDA and a configurable software 
product line family. Similar to our understanding, the authors state that platform 
models are at best derived using domain engineering techniques. A PIM in MDA 
represents the model for a family of platform specific models and as such, seems to 
perfectly align with the idea of developing domain models in domain engineering. We 
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have shown how we can derive platform properties from feature diagrams, and 
platform selection rules from these properties. It would be interesting to investigate 
the relation between MDA and domain engineering further. 

In our previous work, we have modeled heuristic rules for automating software 
development methods [17] [18]. In these approaches, the rules represented selection, 
elimination and transformation actions. In this paper, we have utilized rules merely to 
select a platform. A useful further step would be to integrate both selection and 
transformation rules in a common tool environment. 

The tool that we developed can be considered as an initial expert system that 
codifies the rules for selecting platforms. An expert system usually consists of a 
knowledge base (facts), rule base including production rules, and an inference engine 
for triggering these rules [11]. Expert systems have also been applied for the hardware 
configuration problem. Hereby, the expert system determines the best hardware 
configuration based on the rules in the expert system knowledge base as well as the 
customer requirements.  

8   Conclusions 

It appears that current research on MDA primarily focuses on transformation of 
models. Before transforming to a particular platform specific model, however, it is 
necessary that the appropriate target platform is selected. Currently, the selection of 
platforms is generally considered an ad hoc issue and largely remains implicit. 
However, given the currently relatively broad set of platforms, which is despite MDA 
still expected to grow in the future, it is certainly not a trivial task to select the 
platform that optimally meets the application requirements. As such, we argue that 
besides of transformation process in MDA also the selection of platforms should be 
integrated in the MDA development pattern.  

In section 3 we have given the definitions of platform selection, platform selection 
definition, and platform selection rule as a complementary set of definitions on 
transformation, transformation definition and transformation rule.  

To extract the platform selection rules we have proposed to adopt domain analysis 
techniques. In this context, we have primarily focused on defining properties of 
platforms and derived the rules based on these properties. Further, a first prototypical 
tool environment which indicates the use of the selection of platforms is provided. We 
have illustrated the approach for selecting a platform for stock trading system.  

Since PIM and PSM are just relative terms and a PSM can also function as a PIM 
the platform specific transformations can be applied at different levels in MDA. 
Similarly, in section 6 we have shown that this counts for selecting platforms as well. 
Hereby, first the middleware platform was selected and then the particular component 
platform in the given middleware. 

Although the standard use of MDA assumes that products are built for all 
platforms, and the transformation is considered as automatic, we have highlighted the 
selection of platforms to determine whether it is suitable or not. From our study, we 
can also conclude that the selection of platforms is complementary to the 
transformation process. We have primarily focused on the platforms J2EE and .NET. 
Although the presented example application is rather small, we think that the 
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presented ideas can scale easily for larger applications. This is because the basic 
complexity for selecting the platforms is mostly defined by the platform domain 
model itself, rather than the size of the application. In fact, the presented rules are 
directly derived from the platform model and are more or less fixed for a given 
platform. The only difficulty for larger applications is that the decision for each rule 
could be more difficult, but still manageable. In our future work, we will provide the 
domain models for other platforms as well and derive the rules to support the software 
engineer in selecting the appropriate platforms.  
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Abstract. An MDA-based design approach should be able to accommodate 
designs at different levels of platform-independence. We have previously 
proposed a design approach [2], which allows these levels to be identified. An 
important feature of this approach is the notion of abstract platform. An abstract 
platform is determined by considering the platform characteristics that are 
relevant for applications at a certain level of platform-independence as well as 
the various design goals. In this paper, we discuss how our design approach can 
be supported using the MDA standards UML 2.0 and MOF 2.0. Since our 
methodological framework is based on the notion of abstract platform, we pay 
particular attention to the representation of abstract platforms and the language 
requirements to specify abstract platforms.  

1   Introduction 

A current trend in the development of distributed applications is to separate their 
technology-independent and technology-specific aspects, by describing them in 
separate models. The most prominent example of this trend is the Model-Driven 
Architecture (MDA) [15], [18]. A common pattern in MDA development is to define 
a platform-independent model (PIM) of a distributed application, and to apply 
(parameterised) transformations to this PIM to obtain one or more platform-specific 
models (PSMs). The main benefit of this approach stems from the possibility to 
derive different alternative PSMs from the same PIM depending on the target 
platform, and to partially automate the model transformation process and the 
realization of the distributed application on specific target platforms.  

The concept of platform-independence plays a central role in MDA development. 
We believe that platform-independence can only be defined once a set of target 
platforms is known, such that their general capabilities and their irrelevant 
technological and engineering details can be established. This leads to the observation 
that there can be several PIMs, possibly at different abstraction levels, depending on 
whether one wants to consider different sets of target platforms. Another observation 
is that different application characteristics or different sets of target platforms 
generally lead to different types of (intermediate) models, design structures or 
patterns, and model transformations. These observations have motivated our 
investigations into what types of models can be useful in the MDA development 
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trajectory, how these models are related, and which criteria should be used for their 
application. Some of the results of these investigations have been presented earlier in 
[2], where we have proposed an MDA design trajectory that accommodates designs at 
different levels of platform-independence. 

An architectural concept that plays an important role in this approach is that of 
abstract platform. An abstract platform defines an acceptable or, to some extent, ideal 
platform from an application developer’s point of view; it represents the platform 
support that is assumed by the application developer at some point of (the platform-
independent phase of) the design trajectory. Alternatively, an abstract platform 
defines characteristics that must have proper mappings onto the set of concrete target 
platforms that are considered for an MDA design process, thereby defining the level 
of platform-independence for this particular process. Defining an abstract platform 
forces a designer to address two conflicting goals: (i) to achieve platform-
independence, and (ii) to reduce the size of the design space explored for platform-
specific realization. 

Any design approach that is intended to be successfully applied in practice should 
be supported by suitable design concepts in suitable design languages. In this paper, 
we present some methodological guidelines for platform-independent design and 
define requirements for design languages intended to support platform-independent 
design. Since our methodological framework is based on the notion of abstract 
platform, we pay particular attention to the representation of abstract platforms and 
the language requirements to specify them. We discuss how the architectural concept 
of abstract platform can be supported in UML 2.0 [23] and MOF 2.0 [19]. 

This paper is further structured as follows: Section 2 provides some background on 
the concept of abstract platform; Section 3 discusses how abstract platforms relate to 
design languages; Section 4 discusses how abstract platforms can be represented in 
UML 2.0 and MOF 2.0; Section 5 presents examples of abstract platforms and their 
representations; Section 6 discusses limitations of UML 2.0 with respect to the 
representation of abstract platforms; Section 7 positions our work with respect to 
related work. Finally, Section 8 presents our conclusions and outlines future work. 

2   Abstract Platforms 

Platform-independence is a quality of a model that relates to the extent to which the 
model abstracts from the characteristics of particular technology platforms. In order to 
refer to platform-independent or platform-specific models, one must define what a 
platform is. The following rather general definition of platform can be found in [18] 
(page 2-3): “a platform is a set of subsystems and technologies that provide a coherent 
set of functionality through interfaces and specified usage patterns”. This paper 
concentrates on platforms that correspond to some middleware technology supporting 
operation invocation and asynchronous message exchange, such as CORBA/CCM 
[16], .NET [13] and Web Services [28], [29]. 

When pursuing platform-independence, one could strive for PIMs that are neutral 
with respect to all different classes of middleware platforms. This is possible for 
models in which the characteristics of the supporting technological infrastructure are 
irrelevant, such as, e.g., conceptual domain models [4] and RM-ODP Enterprise 
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Viewpoint models [9], which can be considered as Computation Independent Models 
[18]. However, along a development trajectory, when system architecture is captured, 
some platform characteristics become relevant, and different sets of platform-
independent modelling concepts may be used, each of which being adequate only 
with respect to specific classes of target middleware platforms. This leads to the 
observation that platform-independence is not a binary quality of models; instead, a 
distributed application can be described at several levels of platform-independence. 
The level of platform-independence of a model must be carefully identified. We 
propose to make this identification an explicit step in MDA development. The notion 
of abstract platform, as proposed initially in [2], supports a designer in this step. 

An abstract platform is determined by the platform characteristics that are relevant 
for applications at a certain platform-independent level. For example, if a platform-
independent design contains application parts that interact through operation 
invocations, then operation invocation is a characteristic of the abstract platform. 
Capabilities of a concrete platform are used during platform-specific realization to 
support this characteristic of the abstract platform. For example, if CORBA is 
selected as a target platform, this characteristic can be mapped onto CORBA 
operation invocations. 

The PIM of a distributed application depends on an abstract platform model, in the 
same way as the PSM depends on a (concrete) platform model (see Figure 1). Given 
the PIM of an application and an abstract platform model, we distinguish two 
contrasting extreme approaches to proceed with platform-specific realization: 

1. Adjust the concrete platform, so that it corresponds directly to the abstract 
platform.  

2. Adjust the (scope of the) application during platform-specific realization, such that 
the requirements specified at platform-independent level are preserved and the 
platform-specific application model can be composed with the target platform 
model.  

In approach 1, the boundary between abstract platform and platform-independent 
application model is preserved during platform-specific realization. This implies the 
introduction of some platform-specific abstract platform logic to be composed with 
the concrete target platform. The nature of this composition depends on the particular 
requirements for the abstract platform. It may be possible to implement abstract 
platform logic on top of the concrete platform. Nevertheless, this composition may 
also imply the introduction of platform-specific (e.g., QoS) mechanisms, possibly 
defined in terms of internal components of the concrete platform. Extension in a non-
intrusive manner is often the preferred way to adjust the concrete platform. 
Techniques that can be used for non-intrusive extension include interceptors [16], 
aspect-oriented programming and composition filters [5]. 

Approach 2 may imply the introduction of (e.g., QoS) mechanisms in the platform-
specific design of the application. This approach may be suitable in case it is 
impossible to adjust the concrete target platform, e.g., due to the lack of extension 
mechanisms or the cost implications of these adjustments.Figure 1 illustrates these 
approaches to platform-specific realization.  
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Fig. 1. Alternative approaches to platform-specific realization 

Both approaches allow us to target different concrete platforms from the same 
platform-independent model, with different quality characteristics [2]. Approach 1 
can be generalized as a recursive application of service definition (external 
perspective) and the service’s internal design, resulting in a hierarchy of abstract 
platforms and a concrete target platform. At each step of the recursion, both 
approaches to realization can be chosen. 

3   Design Languages 

Designs must be supported by suitable design concepts and represented using suitable 
design languages. In an MDA design trajectory, several design languages may be 
used, e.g., to produce models at different levels of abstraction. Alternatively, a single 
“broad spectrum” design language [6] may be used. The design language adopted for 
a design has an important role in defining characteristics of an abstract platform 
assumed for the design.  

In an MDA-based development trajectory, we may apply the implicit abstract 
platform definition approach, in which the characteristics of an abstract platform are 
implied by the set of design concepts used for describing the platform-independent 
model of a distributed application. These concepts are often inherited from the 
adopted modelling language. For example, the exchange of “signals” between 
“agents” in SDL [10] may be considered to define an abstract platform that supports 
reliable asynchronous message exchange. The restricted use of particular constructs in 
a design language or the use of certain modelling styles can serve as a means to select 
subsets of a language’s design concepts.  

Instead of implying an abstract platform definition from the adopted set of design 
concepts for platform-independent modelling, it may be useful or even necessary to 
define the characteristics of an abstract platform explicitly, resulting in one or more 
separate and reusable design artefacts. We call this approach explicit abstract 
platform definition. During platform-independent modelling, parts of a pre-defined 
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abstract platform model may be composed with the model of the distributed 
application. For example, although group communication is not a primitive design 
concept of UML 2.0, it is possible to specify the behaviour of a group communication 
sub-system using UML 2.0. This sub-system is then re-used in the design of a 
distributed application. Other examples of pre-defined artefacts that may be included 
in abstract platforms are the ODP trader [8] and the OMG pervasive services [18] (yet 
to be defined). The set of design concepts of a design language is still relevant in this 
approach, since the distributed application and the abstract platform model are 
described in the language.  

In both the implicit and explicit abstract platform definition approaches, there is 
some overlap between language characteristics and abstract platform characteristics. 
This leads to the formulation of an important requirement for a design language to 
support platform-independent design: the concepts underlying the design language 
should be precisely defined, so that the characteristics of the abstract platform can be 
unambiguously derived from these concepts. This is important for at least two 
reasons: (1) designers need to know the characteristics of the abstract platform when 
defining platform-independent models of an application; and (2) abstract platforms 
are a starting point for platform-specific realization.  

Furthermore, a comprehensive MDA design approach should allow designers to 
select or define suitable abstract platforms for their platform-independent designs. 
This leads to the formulation of a second requirement for design languages suitable 
for MDA: a design language should enable the definition of appropriate levels of 
platform-independence. 

4   Abstract Platform Definition with MDA Standards 

In this section, we pay particular attention to the definition of abstract platforms using 
MDA standards, namely UML 2.0 [23] and MOF 2.0 [19]. We discuss the fulfilment 
of the design language requirements presented in Section 3, with both the implicit and 
explicit abstract platform definition approaches. 

4.1   Implicit Abstract Platform Definition 

The concepts that plain UML prescribes for specifying communication between 
application parts (objects or components) imply an abstract platform that is based on 
request-response invocations and on message passing. In the UML 2.0 meta-model, 
BehavioredClassifiers may offer operations and receptions. Operations represent the 
capability of a classifier to receive and to respond to requests. Requests are sent when 
objects execute CallOperationActions. Receptions represent the capability of a 
classifier to receive Signal instances, which are sent asynchronously by other objects 
when these execute SendSignalActions and BroadcastSignalActions. For plain UML, 
the usefulness of the implicit abstract platform definition approach is restricted to 
abstract platforms based on request-response invocations and on point-to-point 
message passing. 

UML has been developed as a general purpose language that is expected to be 
customized for a wide variety of domains, platforms and methods [25]. A certain 
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degree of customization may be obtained in UML through semantic variation points 
and profiles. This choice in the definition of UML has two implications for implicit 
abstract platform definition: the UML specification (“plain” UML) is not conclusive 
with respect to the abstract platform implied, and, the customization mechanisms have 
to be applied in order to precisely define specific abstract platforms. 

Semantic variation points provide an intentional degree of freedom for the 
interpretation of the UML’s metamodel semantics. Some semantic variation points 
defined in the UML specification should be resolved for plain UML to be conclusive 
with respect to the abstract platform implied by the language. An example of such a 
semantic variation point is described in the UML 2.0 specification [23] (page 381): 
“The means by which requests are transported to their target depend on the type of 
requesting action, the target, the properties of the communication medium, and 
numerous other factors. In some cases, this is instantaneous and completely reliable 
while in others it may involve transmission delays of variable duration, loss of 
requests, reordering, or duplication.” Without resolving this semantic variation point, 
a designer would be forced to assume worst-case interpretations, e.g., that the implied 
abstract platform provides an unreliable request/response mechanism. If this is 
undesirable, e.g., because the abstract platform should provide a reliable 
request/response mechanism, a designer should resolve the semantic variation point, 
by defining that requests and response signals are transported reliably. Semantic 
variation points may be partially resolved, i.e., only for the relevant aspects. For 
example, a designer may consider the reliability characteristics of requests relevant, 
but may consider the timing characteristics irrelevant. In this case, any interpretation 
of the timing characteristics of requests would be acceptable. One could resolve these 
semantic variation points by relating the UML metamodel with a formal semantics, or 
to a basic set of design concepts with a formal semantics.  

The specialization of UML for defining abstract platform characteristics can be 
made more manageable and clearly defined through the use of UML profiles. Profiles 
are language extensions consisting of metamodel elements that specialise elements of 
a reference metamodel. The specialized elements can be given specific semantics, in 
this way resolving semantic variation points. Furthermore, constraints expressed in a 
language like OCL [22] can be added to profiles to restrict the use of specific 
concepts or combinations of concepts. This use of profiling for implicit abstract 
platform definition is restricted to constraining or specialising the abstract platform 
implicitly defined by plain UML. In this approach, the referenced metamodel (UML 
2.0’s metamodel) in combination with the UML profile assumes the role of abstract 
platform model. 

In case the relevant abstract platform characteristics cannot be represented by 
resolving semantic variation points through the definition of profiles, one should 
define new languages in terms of MOF metamodels. The design concepts of these 
languages are not constrained by UML, and can be arbitrarily defined through 
mappings from the metamodel elements to any suitable semantic domain. In this 
approach, the MOF metamodel assumes the role of abstract platform model. Profiling 
is more suited to the abstract platforms that require concepts that can be represented 
as specialisations of UML concepts. MOF metamodelling is suited in case the 
required concepts differ too much from the UML concepts, so that a new independent 
metamodel has to be defined. When used systematically, profiling has the advantage 
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that UML tools can be used for model validation and verification, since the resulting 
models still comply with the UML rules and constraints. MOF metamodelling has a 
potential drawback that available validation and verification tools may be impossible 
to reuse, so that new tools may have to be built for the new metamodel. 

4.2   Explicit Abstract Platform Definition 

As an alternative to changing the design concepts of plain UML by means of profiling 
and thereby changing the implicit abstract platform, we can define the abstract 
platform explicitly. The abstract platform is then composed with the design of the 
application. This can be accommodated in UML 2.0 by using model library packages 
[23] to define the abstract platform model. Model library packages are packages 
stereotyped with the standard <<modelLibrary>> stereotype. The abstract platform 
model library package can be imported by the PIM of the application. This is 
represented by creating a dependency between the package where the PIM is defined 
and the model library package where the abstract platform is defined.   

An abstract platform can have an arbitrarily complex behaviour and structure, 
varying from a simple one-way message passing mechanism to a communication 
system that maintains transactional integrity and time order of messages. To make the 
design of complex abstract platforms manageable, we can use UML 2.0’s composite 
structures to break up a complex design into smaller pieces. State-machine and 
activity diagrams may be associated with encapsulated classifiers to define their 
behaviour. 

Since the behaviour of the abstract platform is also described in UML, it may be 
necessary to combine the explicit and the implicit abstract platform definition 
approaches, e.g., by resolving semantic variation points that are relevant for the 
composition of the abstract platform (explicitly defined) and the platform-independent 
model of the application. 

5   Examples 

In order to illustrate both approaches to abstract platform definition in UML, we 
specify the platform-independent model of a simple chatting application. This 
application allows users residing in different hosts to exchange text messages. 

Initially, the application is described in terms of an abstract platform that supports 
the interaction of objects through a conference binding object. We call this abstract 
platform the ConferenceAbstractPlatform. In order to define the composition of the 
conference binding object with the application, we use reliable exchange of 
asynchronous signals. For this purpose, we define an abstract platform that supports 
reliable signal exchange with the implicit approach, by defining a UML profile. Later, 
we consider two possible realizations of the ConferenceAbstractPlatform, one of 
these relies on an event-based platform we define explicitly, and the other relies 
solely on the exchange of reliable signals. The relations between the different models 
are depicted in Figure 2 (the EventAbstractPlatform is only necessary for the 
realization presented in section 5.4). 
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Fig. 2. Relations between the PIM of the application and the abstract platforms defined with the 
implicit and explicit approaches 

5.1   Reliable Signal Exchange 

Figure 3 depicts the ReliableSignalsProfile that specializes the exchange of 
asynchronous messages in UML 2.0. A stereotype <<reliable>> is defined that can 
be applied to instances of SendSignalAction (defined in the package 
IntermediateActions of the UML 2.0 meta-model). Signals created by executing a 
SendSignalAction with this stereotype are exchanged reliably, in that they cannot be 
lost or duplicated. The SendSignalAction meta-class is the only meta-class specialized 
in the profile. It is not necessary to specialise the meta-classes Signal and Reception, 
since these represent respectively, the type of signal instances exchanged and the 
ability to receive signal instances. The semantics of these meta-classes are 
independent of the manner of transmitting signal instances.  

 

 

 

 

«profile»
ReliableSignalsProfile

«metaclass»
IntermediateActions::

SendSignalAction

«stereotype»
reliable

 

Fig. 3. A UML profile specializing the exchange of asynchronous messages 

5.2   The ConferenceAbstractPlatform 

The ConferenceBinding component provides the ConferenceInterface and requires the 
ParticipantInterface. An application part that uses the ConferenceBinding should 
provide the ParticipantInterface. The signals exchanged between application parts 
and the abstract platform are defined explicitly. A class diagram showing the 
ConferenceAbstractPlatform’s component, signals and interfaces is depicted in 
Figure 4. 
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Fig. 4. The ConferenceAbstractPlatform 
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Fig. 5. The ConferenceBinding state-machine 

Figure 5 shows the behaviour of the ConferenceBinding component specified as a 
state-machine. ComponentBinding keeps a list of conference participants, which is 
updated whenever a Join or Leave signal is handled. Upon reception of a MessageReq 
signal, the ConferenceBinding sends out MessageInd signals to all participants of the 
conference. In order to simplify the behaviour we have assumed that the MessageInd 
signals are sent sequentially based on the order imposed by the list of participants 
(result of i.next()). This illustrates the use of the <<reliable>> stereotype.  

The application that uses the ConferenceAbstractPlatform may be defined at a 
high-level of platform-independence, communicating with the conference binding 
through signal exchange. Many alternative implementations for signal exchange are 
possible, depending on the target platform. Further, there is a large freedom of 
implementation for the conference abstract platform itself. Since the application is 
shielded from the internal design of the conference abstract platform, it does not 
depend on the interaction support eventually used by the conference binding object. 
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5.3   Realization of the ConferenceAbstractPlatform 

Figure 6 depicts a realization of the ConferenceBinding. This realization relies on the 
abstract platform that provides reliable signals.  

The interaction point that corresponds to port1 is of type ConferencePort. The 
ConferencePort handles the signals Join and Leave and delegates the handling of 
signals MessageReq to the appropriate ConferenceComponent. There is a Conference 
Component instance for each participant in the conference. ConferenceComponent 
instances exchange message signals among each other and messageInd with the 
interaction point of port1. The definition of these signals is omitted. An OCL [22] 
constraint is used to define that ConferenceComponent instances are fully connected, 
and that there are no links between an instance and itself. Figure 7 shows the 
behaviour associated with the ConferenceComponent. The behaviour of 
ConferencePort is omitted due to space limitations. The signals are exchanged 
reliably, and therefore, the stereotype <<reliable>> is applied to all SendSignal 
Action instances. 
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Fig. 6. A realization of the ConferenceAbstractPlatform 
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Fig. 7. Behaviour of the ConferenceComponent represented as a state-machine 
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5.4   ConferenceAbstractPlatform Realized in Terms of EventAbstractPlatform 

Figure 8 depicts an alternative realization of the ConferenceBinding. This realization 
illustrates the recursive use of an explicitly defined abstract platform. The 
EventAbstractPlatform is used as part eap in ConferenceBindingRealization2. The 
dashed line around part eap is used to denote that this part is contained by reference. 
The multiplicity of eap is one, i.e., only one instance of the EventAbstractPlatform is 
used in this decomposition of the ConferenceBinding.  
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Fig. 8. Alternative realization of the ConferenceAbstractPlatform 

The EventAbstractPlatform accepts events and subsequently forwards these events 
to objects that have subscribed to the particular event type. There is a 
ConferenceComponent for each participant in the conference. The definition of the 
behaviour of the EventAbstractPlatform is omitted here, as well as the classes Event 
and EventKind. 

The EventAbstractPlatform can be realized on a number of event-based platforms, 
such as, e.g., JMS [27] and CORBA (with the Event Service) [16]. Alternatively, a 
recursive decomposition of the EventAbstractPlatform can be done, resulting, e.g., in a 
design of the EventAbstractPlatform that relies on a request-response abstract platform.  

6   Discussion 

The example from the previous section illustrates two kinds of problems that can arise 
when defining abstract platforms with a particular modelling language. 
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Firstly, a language’s design concepts may force decisions about desired platform 
properties to be taken too early in the design process, because they do not permit 
abstraction of these properties. The example in the previous section illustrates this for 
the case of UML state machines. The state machine in Figure 5 determines that 
message requests are processed one at a time. Therefore, a strict interpretation of this 
model would exclude realizations of this abstract platform that accept multiple 
message requests simultaneously. Alternatively, we could have specified that a 
number of concurrent threads process multiple message requests at the same time. 
However, this alternative commits to a particular concurrency model. Ideally, we 
would have stated only that message requests are independent of each other, which is 
appropriate at the level of abstraction considered. The decision on a particular 
concurrency model would be delayed, and different alternative implementations 
would be deemed acceptable. A designer may try to mitigate the limitation of the 
UML representation by interpreting the behavioural specification loosely, e.g., 
informally defining that message requests can also be treated simultaneously despite 
the state machine model. However, this limits the usability of models for model 
transformation, automated testing, validation and simulation.  

Secondly, a language’s design concepts may indirectly favour some platforms over 
others, due to similarities in the structure of models and realizations in a particular 
platform. Although an implementer could try to ignore the structure and choose to 
adhere only to the model’s semantics, he or she will be inclined to use the platform 
with the matching structure. The example from the previous section illustrates this for 
UML composite structures. In composite structures, interaction points that correspond 
to ports can only be created and destroyed along with the component to which they 
are attached. This implies that, if we want to model that an unbound number of 
distinct users may use the component through ports, we have to use a multiplexing 
scheme like the one used in Figures 6 and 8. Although the specification gives the 
impression that the multiplexing scheme has to be implemented, it is wiser for the 
implementer to ignore this scheme in case the target platform allows the dynamic 
creation and destruction of a component’s interaction points. 

7   Related Work 

The MDA Guide [18] provides some examples of “generic platform types” and 
mentions briefly the need for a “generic platform model”, which “can amount to a 
specification of a particular architectural style.” Nevertheless, the introduction of 
these concepts is superficial: for example, the term “generic platform” is not even 
defined explicitly. In our interpretation of that documentation, we position our notion 
of abstract platform as subsuming that of generic platform. Abstract platforms can 
have other relevant characteristics in addition to defining a “particular architectural 
style”. We have identified models that may serve as abstract platform models, in two 
different approaches to abstract platform definition that can be incorporated in MDA 
using OMG core technologies, namely UML, profiles and MOF. 

The UML profile for EDOC Component Collaboration Architecture (CCA) [24] 
defines implicitly an abstract platform in which application part interactions are 
always decomposed into asynchronous messages that are exchanged through “Flow 
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Ports”. This profile also introduces the notion of recursive component collaboration 
(not present in UML 1.5 [26]), which can be explored to define abstract platforms 
explicitly, similarly to what we have obtained by using UML 2.0’s composite 
structures.  

Explicit abstract platform definition is comparable to the definition of (the 
behaviour of) connectors in Architecture Description Languages (ADLs), such as 
Rapide [11], [12] and Wright [1], when considering exclusively the characteristics of 
interaction support. While the role of middleware platform characteristics in ADLs 
have been recognized in [14], mechanisms to systematically separate and relate 
platform-independent and platform-specific descriptions have not been proposed in 
the scope of the work on Software Architecture. 

8   Concluding Remarks 

We have argued previously [2] that the architectural concept of abstract platform 
should have a prominent role in MDA development. An abstract platform defines 
platform characteristics that are considered at the particular level of platform-
independence, and may also serve as starting point for platform-specific realization. 

Design language concepts and characteristics of abstract platforms are interrelated. 
Therefore, careful selection of a design language is indispensable for the beneficial 
exploitation of the PIM/PSM separation and the definition of abstract platforms.  

Often, some platform characteristics are assumed implicitly in platform-
independent designs. This may lead to PIMs that cannot be reused for different 
platforms or it may lead to PIMs that cannot be directly compared and integrated. It 
may also lead to transformations that cannot be reused. Platform characteristics 
assumed in platform-independent designs are better understood and controlled by 
designers if the characteristics of the abstract platform are explicitly represented in 
abstract platform definitions. Furthermore, explicitly identifying an abstract platform 
brings attention to balancing between two conflicting goals: (i) platform-independent 
modelling, and (ii) platform-specific realization. 

We have discussed how to support the concept of abstract platform in standard 
UML, through both the implicit and the explicit abstract platform definition 
approaches. In the implicit definition approach, the semantic variation points of UML 
should either be resolved or should be considered irrelevant for deriving intended 
abstract platform characteristics. UML Profiles can be useful in this approach to 
specialise design concepts, and manage and package abstract platforms. In the explicit 
definition approach, UML 2.0’s composite structures are useful both for defining 
abstract platforms from an external and from an internal perspective. Composite 
structures have been a useful addition to UML 2.0. Nevertheless, we have identified 
some limitations with respect to the level of abstraction that can be obtained in the 
representation of abstract platforms with composite structures. In addition, UML 2.0 
still lacks some notion of behaviour conformance in order to relate behaviours defined 
at a high-level of abstraction and the refined realizations of these behaviours. 
Consequently, we cannot formally assess the correctness of abstract platform 
realizations. 
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We have presented an example in UML in which a number of abstract platforms 
can be combined, both in the implicit and the explicit abstract platform definition 
approaches. We intend to investigate further modularisation criteria for abstract 
platform definitions, aiming at obtaining a reference architecture for abstract platform 
definition. A designer should then be able to compose an abstract platform from 
abstract platform definition modules. This modularisation would ideally be preserved 
in transformation specifications and ultimately at platform-specific level. 
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Abstract. An important drive for Model-Driven Architecture is that
many software applications have to be deployed on a variety of platforms
and within a variety of contexts in general. Using software models, e.g.
described in the Unified Modeling Language (UML), one can abstract
from specific platforms. A software model can then be transformed to
a refined model, given the context in which it should run. Currently,
each target context requires its own model transformation. Only a lim-
ited number of contexts can be supported in this way. We propose a
context-driven modelling framework that models each target context in
a context model, described in the Web Ontology Language (OWL). Mul-
tiple reusable transformation rules are used, which are annotated with
context constraints, based on the OWL context model. The framework
can automatically select the transformation rules that are applicable for
a concrete context.

1 Introduction

The Model-Driven Architecture (MDA) allows for mapping a high-level software
design to a specific implementation platform. Model transformations are used
to refine a Platform-Independent Model (PIM) to a Platform-Specific Model
(PSM). Several layered PSMs can be used to gradually refine the design.

An important drive for MDA is that a lot of software has to run within a
variety of computing contexts. The vision of Ambient Intelligence only increases
this variety, with many portable and embedded devices such as personal digital
assistants (PDAs), smartphones and embedded computers in cars and houses.
For our purposes, context includes the software/hardware platform on which the
software must run, but also other factors, such as required run-time qualities
(e.g. adaptability, performance, security, etc.) and user preferences (e.g. chosen
software features).

In current MDA approaches [1], each target platform requires its own (set of)
model transformation(s). This means that for each new target platform, at least
one new model transformation is needed, even if that platform is only a variant
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of another, already supported platform (e.g. J2ME Personal Profile1 is a variant
of Java). In practice, this means that only a relatively small number of general
platforms can be targeted, e.g. Java or C++. Targeting very specific platforms,
e.g. the previously mentioned J2ME Personal Profile 1.0, is not feasible because
of the maintenance overhead, even though such precise targeting can result in
PSM that is better optimised for the given context.

Looking into the model transformations themselves, it appears that they can
often be made reusable over multiple platforms and it is only how they are config-
ured that makes them applicable to only one platform. For example, one model
transformation could target all Java 2 platforms by transforming “to-many” as-
sociation ends in the Unified Modeling Language (UML) to attributes using the
Java 2 Collections framework. If this transformation is configured to be applied
in combination with a transformation that targets the Java Swing framework,
the target platform is already limited to J2SE for the desktop computer2. The
fact that each configuration of model transformations is also maintained by hand,
makes that the problem of limited platform support remains.

We propose a context-driven modelling framework that can automatically
select appropriate transformation rules for a concrete context and configure them
into a context-optimised transformation. The developer can define a number
of alternative refinement transformation rules. These transformation rules are
annotated with context constraints within which the transformation will work.
These context constraints, as well as the concrete context description, are based
upon an explicit context model. This context model is expressed in the Web
Ontology Language (OWL) [2], which is an extensible language for describing
ontologies. Furthermore, we use the OWL-DL variant, which corresponds to
description logics [3], such that computational completeness can be guaranteed.
The context model forms a basis for describing contexts in general and can
be extended to include the specific context information that is relevant for a
particular application domain. An automatic reasoner, such as RACER [4], can
be used to verify whether a concrete context satisfies the constraints of a model
transformation. Subsequently, one transformation rule is selected for each group
of remaining transformation alternatives, based on how close its constraint lies
to the actual context.

Section 2 discusses how computing context can be modelled and section 3
explains how model transformations can be augmented with context constraints.
In section 4 the mechanism for selecting model transformations is explained. Sec-
tion 5 discusses related work and section 6 states the conclusions for this paper.

2 Context Modelling

In order to reason about context and context constraints, an ontology of com-
puting context is used. Ontologies can serve as a common vocabulary for a
domain [5]. The relationships between the ontology elements can be used to rea-

1 http://java.sun.com/j2me/
2 http://java.sun.com/j2se/
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Fig. 1. Part of the context ontology for describing platforms and users

son about elements based on that ontology. A context ontology allows one to
base expressions about a concrete context on the vocabulary expressed by the
ontology. By using a shared model of context, we can reason about the relation-
ship between a context description and a context constraint, even if the two do
not have a direct relationship. An example context constraint is that the Java 2
Collections framework needs to be present. An example of a context description
includes a Sharp Zaurus PDA. Since both the context constraint and the context
description refer to the context ontology to explain what the Java 2 Collections
framework resp. the Zaurus PDA is, one can derive whether the Zaurus PDA
satisfies the Java 2 Collections framework constraint.

2.1 A Context Vocabulary

Before modelling any specific context or context properties, a basic context struc-
ture needs to be defined. In this paper, the context ontology described in [6] is
used for this purpose3. This ontology is in turn inspired by the User Agent
Profile specification (UAProf) [7] and Composite Capability/Preference Profiles
(CC/PP) [8], both of which are standards intended to describe target platforms.

3 Other ontologies can be used, but it is necessary to use the same ontology for de-
scribing context and constraints on that context.
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Fig. 2. An ontology describing Java virtual machines

The ontology is expressed in OWL, an extensible standard for describing ontolo-
gies. OWL has a variant, called OWL-DL, that corresponds to description logics,
allowing for automated reasoning about the ontology. The ontology used com-
plies to this OWL-DL variant. The part of the ontology that models platforms
and users is shown in Fig. 1.

The platform concept in this ontology can provide software and hardware.
The ’*’ next to the “providesSoftware” relationship denotes a one-to-many re-
lationship. Software and hardware are broken down into different sub-concepts.
This is denoted by the special “isa” subsumption relationship, e.g. the set of
operating systems subsumes the set of software in general. The software can
impose requirements on the platform, e.g. the need for a network resource, a
particular virtual machine or a user interface rendering engine that supports
voice communication. This is denoted by the “requiresPlatform” relationship,
which points to a description of the required platform. The user concept has
profile elements, amongst others, which describes the user. A special case of a
profile is a preference profile, which describes user preferences only.

The ontology can be extended for particular domains of platforms, such as
Java virtual machines. Fig. 2 shows such an ontology. The “VirtualMachine”
concept starts with “context:” to indicate it refers to the “VirtualMachine” con-
cept from the main context ontology. The “Java” virtual machine can be sub-
divided in many different configurations. “Java2” refers to the virtual machines
that run Java 1.2 or up. “Java2” is split up into “J2ME”, “J2SE” and “J2EE”,
which is based on “J2SE”. In the ontology, two other concepts are introduced:
“AWT” and “Swing”. These refer to the Java Abstract Window Toolkit (AWT)
resp. Swing rendering engines. Since some Java virtual machine configurations
already include these, instances of such virtual machines also serve as instances
of the AWT and/or Swing rendering engine. This is represented in the ontology
by defining additional “isa” relationships to the AWT or Swing rendering engine
from the virtual machines.

In order to discriminate on user profile data as well, an ontology extension
for user profiles can be defined. For the purpose of this paper, we will use a very
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Fig. 3. An example ontology for describing user profiles

Fig. 4. Example context description for the author using the Sharp Zaurus PDA

simple profile ontology, describing only the languages that a user can use and/or
prefers to use. This ontology extension is depicted in Fig. 3.

2.2 Modelling Concrete Contexts

The actual context for the PSM can now be described by instances of the context
concepts. Fig. 4 shows an example context description for a Sharp Zaurus PDA.
This PDA has a Personal Profile (PP) J2ME virtual machine installed.

The concepts “Platform” and “PP” are taken from the context resp. Java on-
tologies. The instances, “zaurusC860” and “zaurusPP”, are depicted as rounded
rectangles and are instances of the “Platform” and “PP” classes. This is depicted
by the “io” relationships. The “zaurusC860” platform has a “providesSoftware”
relationship with the “zaurusPP” Java Personal Profile virtual machine. The
“zaurusC860” platform provides a “touchscreen” and a “keyboard” I/O device,
through which the user “dennis” interacts with the platform. Finally, “dennis”
prefers to communicate in “dutch”.

3 Modelling Context Dependencies

Model transformations can now define constraints on instances of the ontol-
ogy concepts. This is done by defining new, completely specified concepts. Such
concepts have necessary and sufficient conditions in addition to any necessary
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conditions. For example, whereas it is necessary that each “J2ME” instance is
also an instance of “Java2” (depicted by the “isa” relationship in Fig. 2), being a
“Java2” instance is not sufficient for also being a “J2ME” instance. The notation
for describing conditions as used in the Protégé tool [9] is also used here.

In order to check if the current platform has a “Java2” class virtual machine,
a concept “Java2Platform” can be defined, which is a sub-concept of “Platform”
(necessary) and provides a “Java2” virtual machine (necessary and sufficient):

Java2P latform � context : P latform

≡ ∃ context : providesSoftware platform : Java2

Whenever a “Platform” instance fulfils the condition of providing a “Java2”
virtual machine, it can be classified as an instance of “Java2Platform”. This
classification can be performed by automatic reasoners. This way, concrete plat-
form instances can be matched against a completely defined constraint concept.
If the platform instance classifies as an instance of the constraint concept, then
the constraint holds for that instance. For example, the “zaurusC860” platform
from Fig. 4 classifies as an instance of “Java2Platform”, since “zaurusPP” is an
instance of “PP”, which is a sub-class of “Java2”.

3.1 Example PIM

Fig. 5 shows part of a PIM for a simple Breakout game, expressed in UML
1.5 [10]. The objective of the game is to remove all the bricks from the screen by
hitting them with the ball. The ball must be bounced back with the paddle, which
is controlled by the player. If the ball falls down the screen (paddle has missed),
the game is over. In the design, the “Field” class represents the screen, which
has composition associations with a “Ball”, a “Paddle” and multiple “Bricks”.
A separate “view” package has been modelled to separate the graphical user
interface from the game model itself. AWT and Swing implementations of the
“view” package have also been modelled, but are not shown in the diagram. Note
that our example PIM contains platform-specific elements that rely on the AWT
and Swing rendering engine. Our notion of PIM includes all models that have
not (yet) committed to a specific platform.

The example PIM contains several elements that are not available in the
programming environment that is needed for the target platform4. These ele-
ments are the “process”, “Observer”, “Observable”, “subscribe” and “thread”
stereotypes, the “Integer” and “Boolean” Object Constraint Language (OCL)
data types, association relationships and specifications of operations (e.g. in
OCL, a dynamic diagram or an Action Language). Model transformations can
be defined to translate each of these elements to one or more elements that are
available in the target programming environment. In addition, the PIM contains
several platform-specific elements, such as the view implementations relying on
Java AWT and Swing. The selection of relevant platform-specific elements can

4 The programming environment comprises the programming language and available
libraries.
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<< process >>

BreakOut

<< create >> + BreakOut ():BreakOut

model

Brick

Dimension

+ width :Integer
+ height :Integer

Point

+ x:Integer
+ y:Integer

Paddle Field

+ newGame ():

field+

sprite+

*

<< Observable >>

Sprite

<< thread >>

Ball

+ running :Boolean = false

+ run ():

size+

position+

view

<< interface >>

ViewFactory

+ createSpriteView (sprite :Sprite ):SpriteView
+ createFieldView (field :Field ):FieldView
+ createBallView (ball :Ball):BallView
+ createPaddleView (paddle :Paddle):PaddleView
+ createBrickView (brick :Brick ):BrickView

FieldView

+ onSpriteChange (sprite :Sprite ):

BallView PaddleView

+ drag (x :Integer ):

factory+

BrickView

<< Observer >>

SpriteView
(from breakout ::view)

+ onPositionChange (pos :Point ):
+ onSizeChange (size :Dimension ):
+ onFieldChange (field :Field ):

viewFactory+

model

+

<< subscribe >>

Fig. 5. Example PIM class diagram for a breakout game

also be performed by model transformations. Examples of some of these model
transformations will be discussed below. The Atlas Transformation Language
(ATL) [11], which has a simple, rule-based syntax, will be used to express these
examples.

3.2 Example Model Transformations

A model transformation for translating UML 1.5 associations to correspond-
ing attributes for Java could use the Java 2 Collections framework to imple-
ment a one-to-many association. The following transformation rules use the
java.util.List interface and the implementing java.util.ArrayList class
to achieve a one-to-many relationship5:

r u l e Assoc i a t i onEndSing leAt t r ibut e {
from s : INMODEL! Assoc iat ionEnd ( s . i sNav i gab l e and s . i s S i n g l e ( ) )
to t : OUTMODEL! Attr ibute (

name <− s . name ,
owner <− s . navigableFrom ( ) ,
type <− s . pa r t i c i pan t ,
v i s i b i l i t y <− s . v i s i b i l i t y ,

5 Note that, in ATL, additional headers are needed and rules are necessary for each
model element that needs to be copied/transformed. Only the rules that perform
actual transformation are shown here for brevity.
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ownerScope <− s . targe tScope ,
changeab i l i t y <− s . changeab i l i t y )

}

r u l e Assoc iat ionEndArrayList {
from s : INMODEL! Assoc iat ionEnd ( s . i sNav i gab l e and not s . i s S i n g l e ( ) )
us ing { c o l l e c t i o n : INMODEL! I n t e r f a c e = INMODEL! I n t e r f a c e . a l l I n s t a n c e s ( )

−>s e l e c t ( c | c . name=’Co l l e c t i on ’)−> f i r s t ( ) ; }
to t : OUTMODEL! Attr ibute (

name <− s . name ,
owner <− s . navigableFrom () ,
type <− c o l l e c t i o n ,
v i s i b i l i t y <− s . v i s i b i l i t y ,
ownerScope <− s . targe tScope ,
changeab i l i t y <− s . changeab i l i t y ,
i n i t i a l V a l u e <− v ) ,

v : OUTMODEL! Express ion (
language <− ’ java ’ ,
body <− ’ new java . u t i l . ArrayLi st ( ) ’ )

}

he lp e r context INMODEL! Assoc iat ionEnd de f : navigableFrom () :
INMODEL! C l a s s i f i e r =

s e l f . a s s o c i a t i o n . connection−>s e l e c t (x | x<>s e l f )−> f i r s t ( ) . p a r t i c i p an t ;

h e lp e r context INMODEL! Assoc iat ionEnd de f : i s S i n g l e ( ) : Boolean =
s e l f . mu l t i p l i c i t y . range−>s e l e c t ( r | r . upper<>1)−>isEmpty ( ) ;

The transformation rules translate only the navigable association ends to
attributes. The first rule translates all association ends with an upper multiplicity
range of “1” to simple attributes. The second rule translates all association ends
with an upper range other than “1” to Java Lists. The from keyword indicates
the element to read from the source model, whereas the to keyword indicates
the element to be created in the target model. The INMODEL and OUTMODEL in
the transformation refer to the meta-models used, which is the UML 1.5 meta-
model in both cases. Two helper functions have been defined to reuse the OCL
expressions for determining the class from which the association end can be
navigated (navigableFrom())6 and whether an association end only points to a
single target (isSingle()). The second rule has a using clause, which locates
the Java Collection interface. This Collection interface is then used as the type
of the attribute that is created. The ArrayList class is used for the initial value
of this attribute.

The AssociationEndSingleAttribute transformation rule does not use any
Java-related elements, and has no platform dependencies. The AssociationEnd-
ArrayList rule uses the Java 2 Collections framework and therefore needs at
least a “Java2” virtual machine (see Fig. 2). This corresponds with the “Java2-
Platform” constraint given at the beginning of this section. An alternative for
the AssociationEndArrayList rule could use the java.util.Vector class to
implement the one-to-many association:

r u l e Associat ionEndVector {
from s : INMODEL! Assoc iat ionEnd ( s . i sNav i gab l e and not s . i s S i n g l e ( ) )
us ing { vector : INMODEL! Class = INMODEL! Class . a l l I n s t an c e s ( )

−>s e l e c t ( c | c . name=’Vector ’)−> f i r s t ( ) ; }
to t : OUTMODEL! Attr ibute (

name <− s . name ,

6 Only binary associations are considered.
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owner <− s . navigableFrom ( ) ,
type <− vector ,
v i s i b i l i t y <− s . v i s i b i l i t y ,
ownerScope <− s . targe tScope ,
changeab i l i t y <− s . changeab i l i t y ,
i n i t i a lV a l u e <− v ) ,

v : OUTMODEL! Express ion (
language <− ’ java ’ ,
body <− ’new java . u t i l . Vector ( ) ’ )

}

Because the Java Vector class was already available in Java 1.0, the platform
constraint can be relaxed to only requiring a Java virtual machine:

JavaP latform � context : P latform

≡ ∃ context : providesSoftware java : Java

4 Context-Driven Refinement

The mechanism that selects the appropriate model transformations is based
on Synthesis-Based Design [12] and its version for MDA transformations [13].
Synthesis-Based Design uses a design space of possible combinations of alterna-
tive design choices. The design choices are represented by model transformations
in this case. The transformations are grouped into sets of alternatives that rep-
resent the same functionality. This grouping can be done automatically, based
on a heuristic that checks the input specification of the transformation rules.
If certain transformation rules have the same input specification, they are con-
sidered to be alternatives. The transformation rules AssociationEndArrayList
and AssociationEndVector, given in subsection 3.2, have the same input speci-
fication (represented by the from part). Hence, they are considered to be alterna-
tives belonging to one group. The groups that are formed in this way only have
to be created once for a set of transformation rules and can be adapted manu-
ally afterwards. Each time a PSM has to be generated for a specific platform,
the existing transformation rules are considered, using the existing grouping in-
formation. An example grouping for the model transformations needed for our
example PIM is shown in Table 1.

The English, French, German and Dutch transformations are simple selec-
tion transformations that select their corresponding language package to be in-
cluded in the deployment. They form one group, since they take all language
package deployment information as input and differ only in which language
packages are copied back out. Similarly, the AWTView and SwingView transfor-
mations select the AWT resp. Swing view implementation from all view imple-
mentations. The AssociationEndArrayList and AssociationEndVector trans-
formations have already been discussed and form one group. The Accessors
transformation creates accessor operations (getters and setters) for each public
attribute. The Process transformation augments all classes with the “process”
stereotype with a “main” operation. The Thread transformation adds a real-
ization relationship to the java.lang.Runnable class to each class with the
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Table 1. Example model transformations grouping

English | French | German | Dutch

AWTView | SwingView

Accessors

AssociationEndArrayList | AssociationEndVector

Process

Thread

Observer | PropertyChangeListener

DataTypes

“Thread” stereotype. The Observer and PropertyChangeListener transfor-
mations both implement the “Observer”, “Observable” and “subscribe” stereo-
types. The first transformation uses the Java 1.0 java.util.Observer interface
and the java.util.Observable class to accomplish this, while the latter uses
the java.beans.PropertyChangeListener interface and corresponding classes.
Finally, the DataTypes transformation translates the OCL data types into Java
data types.

From each group, one model transformation is selected. First, all transforma-
tion constraints are checked against the platform, after which the non-matching
transformations are discarded. Note that, if no transformations are left for a
particular group after this step, no PSM can be generated for the given context.
Each group of remaining alternative transformations is sorted by context rele-
vance, such that the most relevant transformation alternative appears at the top
of the list. The context relevance is determined by subsumption of constraint
concepts. If a constraint concept defines a subset of another constraint concept,
then that constraint is considered more context-specific. Consider the following
context constraint:

Java2Personal � context : P latform

≡ (∃ context : providesSoftware java : Java2) �
(∃ context : providesSoftware java : PersonalJava)

This constraint demands either a “Java2” or a “PersonalJava” VM, whereas
the “JavaPlatform” constraint (see before) demands a “Java” class VM. Both
“Java2” and “PersonalJava” are subconcepts of “Java”. The set defined by the
union of “Java2” and “PersonalJava” is still a subset of “Java”, so the “Java2-
Personal” concept can be classified as a subconcept of “JavaPlatform”. Again,
existing automatic reasoners can be used to classify the subsumption taxonomy
of concepts as they are defined by the constraints.

It is possible that the context constraints of alternative transformations do
not contain enough information to determine whether one constraint subsumes
another. Consider the following example constraint:

AWTPlatform � context : P latform

≡ ∃ context : providesSoftware java : AWT
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Table 2. Example model transformations selected and sorted

Dutch

AWTView

AssociationEndArrayList

Accessors

Process

Thread

PropertyChangeListener

DataTypes

Compared to the “Java2Platform” constraint mentioned earlier, one cannot clas-
sify either as a subset of the other. In such a case, the group of transformation
alternatives (see Table 1) will first be reduced to those alternatives of which the
constraints are leafs in the constraint concept taxonomy. From these alternatives,
the alternative specified left-most in the initial group will be chosen. Consider
three transformation alternatives, A, B and C, which have the “JavaPlatform”,
“Java2Platform” and “AWTPlatform” constraint respectively. If a taxonomy is
created for these constraints, “Java2Platform” and “AWTPlatform” are both
direct subconcepts of “JavaPlatform”. The group of alternatives is reduced to B
and C, since their constraints are the leafs in the taxonomy. If alternative B is
listed before alternative C in the initial group of alternatives, then alternative B
will be chosen.

Since some model transformations may depend on the result of other model
transformations, they need to be ordered. The transformation dependencies can
also be checked automatically by a heuristic that checks if the input specifica-
tion of a transformation may overlap with the output specification of another
(represented by the to part). The output specification of the AssociationEnd-
ArrayList transformation states that it creates new attributes. If another model
transformation, Accessors, creates accessor operations for each public attribute,
then its input specification could match elements generated by Association-
EndArrayList. Hence, AssociationEndArrayList is placed before Accessors.
If no decision can be made on whether to put one transformation before an-
other, the order is left unchanged. This way, the developer can already pre-sort
the groups of transformations manually and no manual intervention is needed for
each context. The sorted list of chosen transformations for the example platform
from Fig. 4 is shown in Table 2.

The AssociationEndArrayList transformation was chosen over the Asso-
ciationEndVector transformation, because it requires a “Java2” VM instead of
any “Java” VM. For the same reason, the PropertyChangeListener transforma-
tion is chosen over the Observer transformation. Also, the transformations have
been sorted according to input-output dependencies: the Accessors transfor-
mation has been placed after AssociationEndArrayList. The Dutch selection
transformation takes in all kinds of elements and can also output all kinds of
elements, so the sorting heuristic could not determine what to do with it. In this
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case, the developer knows that this rule does not depend on any transformation
output, so it remains pre-sorted as the first transformation to execute. The other
transformations don’t generate any elements that may be matched by the input
specification of another transformation, so their order is also not adapted.

5 Related Work

In Generative Programming [14] and Step-Wise Refinement [15], features and
feature models are used to model a family of software systems instead of a single
system. Features can be optional or mandatory for a software system, depending
on the presence of other features. In our framework, features are implicitly gen-
erated or selected by model transformations, which are chosen based on context
constraints. Feature models can be used to verify if the chosen transformations
represent a valid set of features.

The lack of explicit platform models is discussed in [16]. The notion of ab-
stract platform is introduced, which describes a set of elements to model a PIM
against. This set of elements includes design artifacts that are available in a
target platform (classes, interfaces) and design constructs that can be mapped
to that platform (stereotypes, profiles), e.g. with model transformations. The
goal of abstract platforms is to ease platform-independent modelling, whereas
our context models are meant to decouple context information, which includes
the platform, from model transformations.

In [17], platform selection rules are discussed, which allow for pre-selecting
a number of target platforms. In that way, less platforms need to be supported.
In our case, platform selection rules can be used to narrow down the amount
of platform domain aspects (e.g. Java virtual machines) that need to be mod-
elled for a particular application domain (e.g. instant messaging). This does
not conflict with the envisioned ambient intelligence scenario that targets an
open-ended infrastructure of unanticipated devices, since this is supported by
in-depth modelling of platform domain aspects, not the amount of aspects that
are modelled.

In [18], an infrastructure for combining UML models and ontologies is intro-
duced. Such as infrastructure can be useful for a better integration of platform
constraints into model transformation languages.

The KobrA method [19] is an approach for component-based product line
engineering with UML. It uses pattern-based refinements for design elements.
OO-Method [20] also introduces a pattern-based approach for design refinement
and code generation. PRISMA [21] is a modelling approach that can be used to
model context data. Our approach differs in that it uses refinement alternatives,
such that context-based optimisation is possible.

The Catalysis approach [22] is a UML-based development method for com-
ponent-based systems. An important part of this method consists of refinement
of the model elements. As such, our context-driven modelling framework can be
used as a means to refine the model elements in a context-optimised way.

The Context Ontology Language (CoOL) [23] is an ontology-based context
modelling approach, which uses the Aspect-Scale-Context (ASC) model where
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each aspect (e.g. spatial distance) can have several scales (e.g. kilometre scale or
mile scale) to express some context information (e.g. 20). Chen et al. [24] propose
a context broker architecture (CoBrA) using an ontology to describe persons,
places and intentions. Gu et al. [25] present a service-oriented context-aware
middleware (SOCAM) based on a context model with person, location, activity
and computational entity (such as a device, network, application, service, etc.)
as basic context concepts. Henricksen and Indulska [26] propose a context model
that describes context based on several types of facts (e.g. sensed, static and
profiled) subject to constraints and quality annotations. The context ontology
used in this paper puts more focus on the platform description, which is central
to MDA.

6 Conclusion and Future Work

This paper has introduced a context-driven modelling framework that can au-
tomatically choose the most context-specific model transformations from a set
of alternatives. Instead of providing a set of alternative model transformations,
multiple sets of alternative model transformations are provided, which together
can form a complete model transformation. In this way, many more computing
contexts can be supported with a similar design effort.

The proposed modelling framework fits within the MDA vision in that it also
uses several layered refinement transformations. Based on a context model de-
scribed in OWL, specific transformations are chosen to transform a PIM to a PSM.

The selection mechanism relies on the classification of a taxonomy of context
constraints. This classification needs to be done only once for a set of available
model transformations and can then be reused for each concrete context. Fur-
thermore, the constraint checking mechanism implemented by RACER is highly
optimised. It should scale no worse than the matching algorithm needed for the
model transformations themselves.

In the future, a configuration language will be introduced to support the
transformation selection and sorting mechanism. This configuration language
will express the inter-dependencies of the model transformations and will dis-
criminate between mandatory (e.g. an accessor method generator) and non-
mandatory transformations (e.g. a language support selection transformation).
This configuration language will probably be based upon feature models. MOF
can be used for the description of the abstract syntax, such that the same reposi-
tory that is used for storing the various MDA models can also be used for storing
the configuration model.
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Abstract. The paper presents Ontology UML Profile (OUP); which, together 
with Ontology Definition Metamodel (ODM), enables the usage of Model 
Driven Architecture (MDA) standards in ontological engineering. Other similar 
metamodels and UML profiles are based on ontology representation languages, 
such as RDF(S), DAML+OIL, etc. However, none of these other solutions uses 
the recent W3C effort – The Web Ontology Language (OWL). In our approach, 
we firstly define the place of ODM and OUP in the context of the MDA four-
layer architecture and identify the main OWL concepts. Then, to support ODM, 
we define OUP and describe its details. The proposed UML profile enables 
usage of the well-known UML notation in ontological engineering more 
extensively. We implemented an XSLT that transforms OUP ontologies into 
OWL in order to provide a suitable tool support. 

1   Introduction 

The Semantic Web and its XML-based languages are the main directions of the future 
Web development. Domain ontologies [1] are the most important part of the Semantic 
Web applications. They are formal organization of domain knowledge, and in that 
way enable knowledge sharing between different knowledge-base applications. 
Artificial intelligence (AI) techniques are used for ontology creation, but those 
techniques are more related to research laboratories, and they are unknown to wider 
software engineering population. 

In order to overcome the gap between software engineering practitioners and AI 
techniques, there are a few proposals for UML usage in ontology development [2]. 
But, UML itself does not satisfy needs for representation of ontology concepts that 
are borrowed from description logics, and that are included in Semantic Web 
ontology languages (e.g. RDF, RDF Schema, OWL, etc.). The OMG’s Model Driven 
Architecture (MDA) concept has the ability to create (using metamodeling) a family 
of languages [3] that are defined in the similar way like the UML is. Accordingly, in 
this paper, the authors briefly show a metamodel for ontology modeling language – 
Ontology Definition Metamodel (ODM). This metamodel is defined using Meta-
Object Facility (MOF), and is based on the Web Ontology Language (OWL). Since 
Unified Modeling Language (UML) is widely accepted as a modeling language, we 
define a profile that supports ontology design – Ontology UML Profile. It is a 
standard extension of UML, and is also based on MOF. Ontology UML Profile is 
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intended to be used as a support to ODM, not as a stand-alone solution for Ontology 
modeling. 

The overview of the Semantic Web languages and OWL is given in the next 
section, while the description of the MDA and MOF is in section three. In section four 
we give a framework for our approach of the ontology language metamodel in the 
MDA context and the overview of ontology metamodel definition. The details of 
Ontology UML Profile are shown in the section five. Section six contains an XSLT-
based implementation example for transforming an ontology UML Profile into OWL, 
as well as our experiences in using this transformation. The last section contains final 
conclusions. This work is a part of the effort of the GOOD OLD AI research group 
(http://goodoldai.org.yu/) in developing AIR - a platform for building intelligent 
systems. 

2   An Overview of the Semantic Web, Web Ontology Language, 
MDA and MOF 

The step beyond the World Wide Web is the Semantic Web [4], which will enable 
machine-understandable data to be shared across the Net. The Semantic Web will be 
powered by metadata, described by ontologies that will give machine-understandable 
meaning to its data. Ontology is one of the most important concepts in knowledge 
representation. It can be generally defined as shared formal conceptualization of 
particular domain [1]. The World Wide Web and XML will provide the ontologies 
with interoperability, and these interoperable ontologies will, in return, facilitate Web 
that can “know” something.  

Semantic Web architecture is a functional, non-fixed architecture [5]. Barnes-Lee 
defined three distinct levels that incrementally introduce expressive primitives: 
metadata layer, schema layer and logical layer [6]. Languages that support this 
architecture and the place of OWL are shown in Figure 1. 

 

Fig. 1. OWL in the Semantic Web architecture 

Common data interoperability in present applications is best achieved by using 
XML [7]. As shown in the Figure 1, XML supports syntax, while semantics is 
provided by RDF, RDF Schema and mainly by OWL [8]. In order to provide 
capabilities for unconstrained representation of the Web knowledge and, in the same 
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time, to support calculations and reasoning in finite time with tools that can be built 
on the existing or soon available technologies, OWL introduces three increasingly 
expressive sublanguages for various purposes: OWL Full (maximal expressiveness), 
OWL DL (guaranties computational completeness) and OWL Lite (for starters). 

Model Driven Architecture (MDA) [9] defines three viewpoints (levels of 
abstraction) from which some system can be seen. From a chosen viewpoint, a 
representation of a given system (viewpoint model) can be defined. These models are 
(each corresponding to the viewpoint with the same name): Computation Independent 
Model (CIM), Platform Independent Model (PIM) and Platform Specific Model (PSM). 

OMG's MDA is based on the four-layer metamodeling architecture, and several 
OMG’s complementary standards; which is shown in Figure 2. These standards are 
Meta-Object Facility (MOF) [10], Unified Modeling Language (UML) [11] and XML 
Metadata Interchange (XMI) [12]. Layers are: meta-metamodel (M3) layer, 
metamodel (M2) layer, model (M1) layer and instance (M0) layer.  

 

Fig. 2. MDA four-layer MOF-based metadata architecture 

On the top of this architecture is the meta-metamodel (MOF). It defines an abstract 
language and framework for specifying, constructing and managing technology 
neutral metamodels. It is the foundation for defining any modeling language; such as 
UML or even MOF itself. MOF also defines a framework for implementing 
repositories that hold metadata (e.g. models) described by metamodels [10]. The main 
aim of having four layers with common meta-metamodel is to support multiple 
metamodels and models; to enable their extensibility, integration and generic model 
management and metamodel management. Present software tools support for MDA is 
concentrated primarily on UML as a graphical notation and MDA’s M1 layer, with no 
concern of metamodeling layers [13]. 
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3   The Ontology Modeling Architecture 

To be widely adopted by users and to succeed in real-world applications, knowledge 
engineering and ontology modeling must catch up with mainstream software trends. It 
will provide a good support in software tools and ease the integration with existing or 
upcoming software tools and applications, which will add values to both sides. To be 
employed in common applications, software knowledge management must be taken 
out of laboratories and isolated high-tech applications and put closer to ordinary 
developers. This issue has been addressed in more details in Cranefield’s papers [2]. 

MDA and its four-layer architecture provides a solid basis for defining metamodels 
of any modeling language, therefore it is the straight choice to define an ontology-
modeling language in MOF. Such language can utilize MDA’s support in modeling 
tools, model management and interoperability with other MOF-defined metamodels. 
Present software tools do not implement many of the concepts that are the basis of 
MDA. However, most of these applications, which are mostly oriented to the UML 
and M1 layer, are expected to be enhanced in the next few years to support MDA.  

Currently, there is a RFP (Request for Proposal) within OMG that tries to define a 
suitable language for modeling Semantic Web ontology languages in the context of 
MDA [14]. According to this RFP we give our proposal of such architecture [15]. In 
our approach of ontology modeling in the scope of MDA, which is shown in Figure 3, 
several specifications should be defined: 

• Ontology Definition Metamodel (ODM) 
• Ontology UML Profile – a UML Profile that supports UML notation for 

ontology definition 
• Two-way mappings between OWL and ODM, ODM and Ontology UML 

Profile and from Ontology UML Profile to other UML profiles. 

 

Fig. 3. Ontology modeling in the context of MDA and Semantic Web 
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We designed Ontology Definition Metamodel (ODM) to comprehend common 
ontology concepts. A good starting point for ODM construction was OWL since it is 
the result of the evolution of existing ontology representation languages and is a W3C 
recommendation [8]. It is at the Logical layer of the Semantic Web [8], on top of RDF 
Schema (Schema layer). In order to make use of graphical modeling capabilities of 
UML, an ODM should have a corresponding UML Profile [16]. This profile enables 
graphical editing of ontologies using UML diagrams as well as other benefits of using 
mature UML CASE tools. Both UML models and ODM models are serialized in XMI 
format so the two-way transformation between them can be done using XSL 
Transformation. OWL also has representation in the XML format, so another pair of 
XSL Transformations should be provided for two-way mapping between ODM and 
OWL. For mapping from the Ontology UML Profile into another, technology-specific 
UML Profiles, additional transformations can be added to support usage of ontologies 
in design of other domains and vice versa. 

4   Ontology UML Profile Essentials 

UML Profile is a concept used for adapting the basic UML constructs to some 
specific purpose. Essentially, this means introducing new kinds of modeling elements 
by extending the basic ones, and adding them to the modeler’s tools repertoire. Also, 
free-form information can be attached to the new modeling elements. 

4.1   UML Profile Basics 

The basic UML constructs (model elements) can be customized and extended with 
new semantics by using four UML extension mechanisms defined in the UML 
Specification [17]: stereotypes, tag definitions, tagged values, and constraints. 
Stereotypes enable defining virtual subclasses of UML metaclasses, assigning them 
additional semantics. For example, we may want to define the «OntClass» 
stereotype, Figure 4, by extending the UML Class metaclass to denote the modeling 
element used to represent ontologies (and not other kinds of concepts).  

Tag definitions can be attached to model elements. They allow for introducing new 
kinds of properties that model elements may have and are analogous to metaatribute 
definitions. Each tag definition specifies the actual values of properties of individual 
model elements, called tagged values. Tag definitions can be attached to a stereotype 
to define its virtual metaattributes. For example, the «OntClass» stereotype in 
Figure 4 has a tag definition specifying 4 tagged values (for enumeration, intersection, 
etc.). 

Constraints make possible to additionally refine the semantics of the modeling 
element they are attached to. They can be attached to each stereotype using OCL 
(Object Constraint Language) [17] or English language (i.e. spoken language) in order 
to precisely define the stereotype’s semantics (see the example in Figure 4). 

More details about UML extension mechanisms can be found in  [17] and  [18].  
A coherent set of extensions of the basic UML model elements, defined for 

specific purposes or for a specific modeling domain, constitutes a UML profile.  
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Fig. 4. New stereotype definition 

4.2   Design Rationale for Ontology UML Profile 

In order to customize UML for modeling ontologies, we define UML Profile for 
ontology representation, called Ontology UML Profile. In developing our Ontology 
UML Profile we used experiences of other UML Profile designers (e.g., see [19]). 
Applying such experiences to our case, we wanted our Ontology UML Profile to: 

• offer stereotypes and tags for all recurring ontology design elements, such as 
classes, individuals, properties, complements, unions, and the like; 

• make specific ontology modeling and design elements easy to represent on 
UML diagrams produced by standard CASE tools, thus keeping track of 
ontological information on UML models; 

• enable encapsulating ontological knowledge in an easy-to-read format and 
offer it to software engineers; 

• make possible to evaluate ontology UML diagrams and to indicate possible 
inconsistencies; 

• support Ontology Definition Metamodel, hence be able to represent all ODM 
concepts. 

Currently, several different approaches to ontology representation in UML have 
been proposed. We note two major trends among them: 

• Extending UML with new constructs to support specific ontology concepts 
(Property for example) [20]. 

• Using standard UML and defining a UML Profile for ontology representation 
[21]. 

We believe that ontology representation in UML can be achieved without non-
standard UML extensions, hence our approach belongs to the latter of the above two 
trends. In our Ontology UML profile, specific ontology concepts are annotated using 
the standard UML extension mechanisms described above. Models created with such 
a UML Profile will be supported by standard UML tools, since they do not add non-
standard concepts to UML, thus they are UML models. Since in our approach UML is 
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used to support ODM, not as a stand-alone tool for ontology modeling, Ontology 
UML Profile will not cover all of the essential ODM (Ontology Definition 
Metamodel) concepts. Ontology UML Profile should define only constructs for 
concrete concepts, such as ObjectProperty, Class or Individual, leaving 
ODM to deal with abstract constructs like Resource, Instance, Classifier, 
etc, which are not used in development of real ontologies (models), and do not relate 
to real-world things; they are only introduced to ODM in order to create a coherent 
hierarchy.  

A UML Profile definition in the context of the MDA four-layer metamodeling 
architecture means extending UML at the metamodel layer (M2). One can understand 
these extensions as a new language, but also UML as a family of languages [3]. Each 
of these languages uses UML notation with the four UML extension mechanisms. 
Recent UML specifications [17] enable using graphical notation for specifying 
stereotypes and tagged definitions [22]. Thus, all stereotypes and tagged values that 
are defined in this paper can be shown in this way. 

The notation used for stereotype creation of Ontology UML Profile («OntClass» 
stereotype) accomodetes UML’s Class («metaclass»). Having this graphical 
notation for the UML extension mechanism can be useful for explaining certain 
relations between UML constructs and new stereotypes, but also between stereotypes 
themselves. 

Since stereotypes are the principle UML extension mechanism, one might be 
tempted to think that defining Ontology UML Profile is a matter of specifying a 
couple of stereoptypes and using them carefully in a coherent manner. In reality, 
however, it is much more complicated than that. The reason is that there is a number 
of fine details to take care of, as well as the existence of some conceptual 
inconsistencies between MDA and UML that may call for alternative design 
decisions. The following subsections describe the most important Ontology UML 
Profile concepts in detail. 

4.3   Ontology Classes 

Class is one of the most fundamental concepts in ODM and Ontology UML Profile. 
As we noted in the discussion about the essential ODM concepts, there are some 
differences between traditional UML Class or OO programming language Class 
concept and ontology class as it is defined in OWL (owl:Class). Fortunately, we 
are not trying to adopt UML as stand-alone ontology language, since that might 
require changes to UML basic concepts (Class and other). We only need to 
customize UML as a support to ODM. 

In ODM, Ontology Class concept is represented as an instance of MOF Class, 
and has several concrete species, according to the class description: Class, 
Enumeration, Union, Intersection, Complement, Restriction, and a 
special built-in OWL class AllDifferent. These constructs in the Ontology UML 
Profile are all inherited from the UML concept that is most similar to them, UML 
Class. But, we must explicitly specify that they are not the same as UML Class, 
which we can do using UML stereotypes. An example of Classes modeled in 
Ontology UML Profile is shown in Figure 5. 
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Fig. 5. Class Diagram showing relations between Ontology Classes and Individuals in the 
Ontology UML Profile 

ODM Class identified by a class identifier will have the stereotype 
«OntClass», AllDifferent - «AllDifferent» and Restriction - 
«Restriction». In ODM, Enumeration, Intersection, Union and 
Complement are descendants of ODM Class; in Ontology UML Profile they have 
stereotypes «Enumeration», «Intersection», «Union» and 
«Complement». The «OntClass» stereotype would be extended by each of these 
new stereotypes. Additionally, enumeration, intersection, union and complement are 
defined by Boolean tagged values - enumeration, intersection, union and complement, 
which can be added to «OntClass» with the constraint that only one of them can be 
true. This would be similar to the solution used in other UML profiles. A good 
example is the XML Schema UML profile [23] that has stereotypes for modeling the 
content model of the XML Schema complex type: any, choice, and sequence. 
Complex type itself is a distinct stereotype as well. Also, in parallel with these 
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stereotypes, there is a tagged value modelGroup attributed to the complex type 
stereotype that can take a value from the set consisting of: any, choice, and sequence. 

Figure 5 shows various types of ontology classes modeled in UML.  
The Class Person is an example of an ontology Class that is identified by  
a class identifier, TheRollingStones and TheWailers are  
enumerations, StonesWailersIntersection is an intersection, and 
StonesWailersUnion is a union. There is one unnamed class that represents 
complement of TheWailers – all individuals that are not members of 
TheWailers. AllDifferent is an auxiliary class whose members are different 
individuals. Also shown is an «OntClass» Human and the Dependency 
«equivalentClass», which means that Person and Human are classes that 
have the same class description (i.e. all Persons are Humans and vice versa). The 
names of classes whose name is not important could be automatically generated by 
the tool, and not shown in the diagram. 

4.4   Individuals 

In ODM, an instance of an AbstractClass is called Individual. In UML, an 
instance of a Class is an Object. ODM Individual and UML Object have 
some differences, but they are similar enough, so in Ontology UML Profile, 
Individual is modeled as UML Object, which is shown in Figure 5. The 
stereotype for an object must match the stereotype for its class («OntClass» in this 
case). Stating that some Individual has some type is done in three ways: 

1. by using an underlined name of an Individual followed by “:” and its 
«ontClass» name (for example, Mick:Person is an Individual whose type 
is Person. This is the usual UML method of stating an Object’s type.  

2. by using a UML Dependency’s stereotype «instanceOf» between an 
Individual and its «ontClass». This method is also allowed in standard 
UML. For example, Mick is an instance of TheRollingStones. 

3. indirectly – through logical operators on «OntClass». If some «OntClass» is 
a union, intersection or complement, it is a class of Individuals 
that are not explicitly defined as its instances. For example, Mick is not 
explicitly defined as a member of StonesWailersUnion, but it is its member 
since he is a member of TheRollingStones, which is connected with 
StonesWailersUnion through a «unionOf» connection.  

Although there are some UML tools (Together, Visio) that allow relations between 
a UML Class and a UML Object in a UML Class Diagram, many popular UML tools 
(e.g. Rational Rose, Poseidon for UML) do not support this, even though the UML 
specification [17] clearly states that Objects and Links can be drawn on Class 
Diagrams. The authors believe that this is closely related to understanding UML as a 
graphical notation for modeling and using it with object-oriented programming 
languages. Another very important issue is related to the MDA metamodeling 
architecture. UML classes are usually thought of as belonging to the model layer 
(M1), whereas UML objects are believed to belong exclusively to the instance level 
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(M0). But, this is not quite correct: the UML class and object are defined at the same 
MDA layer (i.e. M2). Thus, their instances are at the same layer – the model layer 
(i.e. M1). Actually, a UML object models a thing from the real world [24]. But, 
objects only model real world things; they are not real things (e.g. in Figure 5 the 
object Mick only models an instance of Human). Then, how can we distinguish 
between the instance-of relation between objects and classes, and, on the other hand, 
between UML Class (metaclass) and some concrete class? We believe that Atkinson 
and Kühne [25] have adequately proposed the solution to this problem by introducing 
two kinds of instance-of relations: linguistic and ontological. The linguistic instance-
of relation is the instance-of relation between concepts from different layers (UML 
Class definition and some concrete class, for instance TheWailers). The 
ontological instance-of relation is the instance-of relation between concepts that are at 
the same linguistic layer, but which are at different ontological layers (for instance, 
<<OntClass>> Person and object Keith are at different ontological layers since 
Human is the class (type) of Keith). 

4.5   Ontology Properties 

Property is one of the most unsuitable ontology concepts to model with object-
oriented languages and UML. The problem arises from the major difference between 
Property and its similar UML concepts – Association and Attribute. 
Since Property is an independent, stand-alone concept, it can not be directly 
modeled with Association or Attribute, which can not exist on their own. 
Some authors [20] suggested extending UML with new constructs to support the 
stand-alone Property, introducing aspect-oriented programming concepts into 
UML. In our view, this solution is rather extreme, since it demands non-standard 
changes to UML. We try to introduce Property in UML in some other way instead. 

Since Property is a stand-alone concept it can be modeled using a stand-alone 
concept from UML. That concept could be the UML Class’ stereotype 
«Property». However, Property must be able to represent relations between 
Resources (Classes, Datatypes, etc. in the case of UML), which the UML 
Class alone is not able to do. If we look at the ODM Property definition more 
closely, we will see that it accomplishes relation representation through its range 
and domain. According to the ODM Model, we found that in the Ontology UML 
Profile, the representation of relations should be modeled with UML 
Association’s or UML Attribute’s stereotypes «domain» and «range». In 
order to increase the readability of diagrams, the «range» association is 
unidirectional (from a Property to a Class). 

ODM defines two types (subclasses) of Property – ObjectProperty and 
DatatypeProperty. ObjectProperty, which can have only Individuals 
in its range and domain, is represented in Ontology UML Profile as the Class’ 
stereotype «ObjectProperty». DatatypeProperty is modeled with the 
Class’ stereotype «DatatypeProperty».  

An example of a Class Diagram that shows ontology properties modeled in UML 
is shown in Figure 6. It contains four properties: two «DatatypeProperty»s 
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(name and socialSecurityNumber) and two «ObjectProperty»s 
(nationality and colleague) UML Classes. In cooperation with 
«domain» and «range» UML Associations, or «domain» and «range» 
UML Attributes, they are used to model relationships between «OntClass» 
UML Classes. Tagged values describe additional characteristics, for example, 
«ObjectProperty» colleague is symmetric (if one Person is a colleague 
of another Person, the other Person is also a colleague of the first Person) 
and transitive (if the first Person is a colleague of the second Person, who is a 
colleague of the third Person, the first and third Person are colleagues). In ODM, 
these characteristics are added to an ODM Class applying the Decorator Design 
Pattern [26]. The transformation that maps an Ontology UML Profile model to an 
ODM model should create one decoration of an ODM Property per attribute of 
Ontology UML Profile «ObjectProperty» or «DatatypeProperty». 

There is an important issue that must be clarified with this diagram. In UML, 
relations are represented by Associations (graphically represented as lines) or 
Attributes, which looks nice and simple. Ontology UML Profile diagrams may 
look overcrowded, since each relation requires a box and two lines to be properly 
represented. The solution shown in this paper uses standard graphical symbols, but 
UML allows custom graphical symbols for a UML Profile. For example, a custom 
graphical symbol for Property could be a tiny circle with lines, which reduces the 
space on diagrams. Also, additional custom settings, like distinct colors for 
«OntClass» (green), «ObjectProperty» (orange) or «DatatypeProperty» 
(orange) in this paper, can be used to increase the diagram readability. For the sake of 
readability, this UML Profile allows two styles of «DatatypeProperty» domain 
and range presentation. An example of the first style (a UML Class with two UML 
Associations) is socialSecurityNumber, and an example of the second 
one (a Class with Attributes as domain or range) is name. The second style is 
allowed only for «DatatypeProperty» whose range multiplicity is equal or less 
than one. So, if a «DatatypeProperty» has range multiplicity of 0..1 or 1, the 
style with Attributes can be used to reduce the clutter. 

 

Fig. 6. Ontology Properties shown in UML Class Diagram 
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4.6   Statement 

ODM Statement is a concept that represents concrete links between ODM 
instances – Individuals and DataValues. In UML, this is done through Link 
(an instance of an Association) or AttributeLink (an instance of an 
Attribute). Statement is some kind of instance of a Property, which is represented 
by the UML Class’ stereotype («ObjectProperty» or 
«DatatypeProperty»). Since in UML a Class’ instance is an Object, in 
Ontology UML Profile Statement is modeled with Object’s stereotype 
«ObjectProperty» or «DatatypeProperty» (stereotype for Object in 
UML must match the stereotype for its Class’ stereotype). UML Links are used 
to represent the subject and the object of a Statement. To indicate that a Link is the 
subject of a Statement, LinkEnd’s stereotype «subject» is used, while the object 
of the Statement is indicated with LinkEnd’s stereotype «object». LinkEnd’s 
stereotype is used because in UML Link can not have a stereotype. These Links 
are actually instances of Property’s «domain» and «range». In brief, in Ontology 
UML Profile Statement is represented as an Object with two Links – the 
subject Link and the object Link, which is shown in Figure 7. The represented 
Persons Mick and Keith are colleagues. They both have UK (Great Britain) 
nationality. 

 

Fig. 7. Individuals and Statements shown in a UML Object Diagram 

As with Ontology Properties, the diagram’s readability can be further increased by 
using distinct colors and custom graphical symbols. A tiny circle can be used instead 
of the standard box for representing the Statement in order to reduce clutter on a 
diagram. 

5   Tool Support 

In this section we describe our XSLT-based implementation for transforming OUP 
into OWL [27]. A UML tool (e.g. Poseidon for UML) can export an XMI document 
that an XSLT processor can use as the input. An OWL document is produced as the 
output, and this format can be imported into a tool specialized for ontology 
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development (e.g. Protégé), where it can be further refined. On the other hand, since 
we obtain an OWL described document, we do not need to use any ontology tool, 
instead we are able to use this ontology description as a final OWL ontology. 
Furthermore, when we use an approach based on XSLT (the XSLT principle) we do 
not need to change (i.e. recompile) a UML tool, but we just apply an XSLT on an 
output document of the UML tool. Accordingly, we can use well-defined XML/XSLT 
procedure that is shown in Figure 8. 

Fig. 8. Used XSLT principle: extensions of present UML tools for ontology development 

The XSLT, which we have implemented for mapping from the OUP XML format 
(i.e. UML XMI) to the OWL description, contains a set of rules (i.e. templates) that 
match XMI constructs and transform them into equivalent OWL primitives. While 
developing these rules we faced some serious obstacles resulting from evident 
differences between source and target format. We note some of them: 

− The structure of an XMI document is fairly awkward since it contains full 
description of an UML model. 

− The OUP, in some cases, uses more than one UML construct to model one OWL 
element.  

− UML tools can only draw UML models, but they do not have an ability to check 
the completeness of an OUP ontology. Thus, the XSLT is incurred to check XMI 
documents. This is the only way to avoid generation of erroneous OWL 
ontologies. 

− The XSLT must make difference between classes that are defined in other classes 
(nested classes that can not be referenced from other classes using their ID) and 
classes that can be referenced using their ID. Accordingly, we included the 
odm.anonymous tagged value into OUP. This tagged value helps detect these two 
cases. 

The developed solution acts as an extension for standard UML tools and thus 
enables us to create complete OWL ontologies without need to use ontology-
specialized development tools. We have decided to use Poseidon for UML since it 
supports all requirements for OUP. We decide to generate OWL ontologies in the 
fashion similar to the Protégé’s OWL plugin. Hence, we have managed to provide an 
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additional way to import Poseidon’s models into Protégé through the OWL. Of 
course, since Protégé has more advanced features for ontology development, an OUP-
defined ontology can be further refined. 

We have tested our solution on the well-known example of the Wine ontology. 
Firstly, we represented this ontology in Poseidon using OUP. Then we exported this 
extended UML into XMI, and after performing the XSLT, we obtained an OWL 
document. Finally we imported this document into Protégé using its OWL plugin.  

The current XSLT version has a limitation since it does not support packages (i.e. 
the OUP multi-ontology development). Actually, OUP supports multiple ontologies 
within the same XMI project, but the XSLT standard and XSLT processors introduce 
this limitation. 

So far, we have developed two ontologies using OUP that we later transformed in 
OWL using the XSLT. These two ontologies are: the ontology of saints and 
philosophers, and the Petri net ontology. The first ontology was developed using the 
Porphyry's tree method. The Petri net ontology was developed in order to provide the 
Semantic Web support for Petri nets [28]. 

6   Conclusions 

The Ontology UML Profile defined in this paper and ODM are in accordance with the 
OMG’s RFP initiative for ontology modeling. Accordingly, we borrowed the name 
ODM for our metamodel from the OMG’s RFP. The proposed solution enables using 
ontologies in the way that is closer to software engineering practitioners. Also, since 
the UML and ODM are defined as MOF-compliant languages it is possible to store 
ontologies in MOF-based repositories, to store ontology diagrams in a standard way 
(UML2 XMI), as well as to share and interchange ontologies using XMI.  

The proposed Ontology UML Profile can be considered as a part of the effort to 
specify standard ontology metamodel. Their important feature is that they are based 
on OWL. With the Ontology UML Profile, the ODM concepts can be used as 
stereotypes in the UML models (similar to UML CORBA Profile or other OMG’s 
UML Profiles).  

The possibilities of defining other AI metamodels in MOF should and will be 
explored in the future work. This means that MDA and MOF will be the integrating 
point for metamodels, both common and AI-related. Another important research 
direction is to examine the usability of the proposed OUP on real-world ontologies. 
Further plans also include using Java Metadata Interface (JMI) [29] to enable 
creation, storage, access, discovery, and exchange of ODM-defined ontologies using 
standard Java interfaces. 
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Abstract. Knowledge engineers have favoured a diagrammatic approach for 
developing knowledge-based systems and have adopted those used in software 
engineering. However, these modelling techniques tend to be used in an ad hoc 
way and are highly dependent on the modelling experience of the engineers in-
volved. This paper focuses on the use of profiles for knowledge modelling that 
are available in the Unified Modeling Language (UML). It identifies the short-
comings of current approaches to adopting UML and discusses the need for an 
extension to UML using the profile mechanism. A profile based on the eXecu-
table Modelling Framework (XMF) is also presented as work-in-progress. 

1   Introduction 

The use and management of knowledge in enterprises has become a commercial ne-
cessity for many organisations, in order that they manage their corporate intellectual 
assets and gain competitive advantage. Most knowledge resides in human memories 
and managing it is seen as a human-oriented process rather than a technology-based 
solution. Nevertheless, technology can be utilised as a knowledge management en-
abler by adopting software tools, including the internet and groupware systems. One 
of the prominent tools in managing knowledge is the knowledge-based system (KBS).  

Knowledge-based systems can be deployed as the technological means for captur-
ing and managing both explicit and tacit knowledge as part of an organisation’s 
knowledge management initiative. But, before these can be built, the knowledge that 
pervades the organisation must be identified and modelled using appropriate acquisi-
tion, representation and modelling techniques. 

This paper is organised as follows: Section 2 generally describes knowledge-based 
systems and the field of knowledge engineering. Section 3 gives an overview of the 
rôle of knowledge modelling and the techniques that are currently used. Section 4 
explains the need to have an extension to UML for modelling knowledge, while Sec-
tion 5 describes what is a UML profile. Section 6 presents the initial knowledge mod-
elling profile constructed using identified modelling concepts, while Section 7 con-
cludes and indicates the direction for future work. 
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2   Knowledge-Based System and Knowledge Engineering  

A knowledge-based system (KBS) is a software application with an explicit, declara-
tive description of knowledge for a certain application [1]. There is no single dividing 
line that differentiates a KBS and an information/software system as almost all con-
tain knowledge elements within them [2]. An information system is a set of interre-
lated components that together collects, processes, stores, analyses, and disseminates 
data and information in an organization. In contrast, a KBS has knowledge repre-
sented in an explicit form, and hence the increased importance of knowledge model-
ling [2] compared with that required of an information system. 

The development process of a KBS is similar to any general system development; 
stages such as requirements gathering, system analysis, system design, system devel-
opment and implementation are common activities. The stages in KBS development 
are: business modelling, conceptual modelling, knowledge acquisition, knowledge 
system design and KBS implementation [1]. 

A KBS is developed using knowledge engineering (KE) techniques [3]. These are 
similar to software engineering (SE) techniques, but have an emphasis on knowledge 
rather than data or information processing; they inherently advocate an engineering 
approach to the process of developing a KBS. The central theme in this approach is 
the conceptual modelling of the system in the analysis and design stages of the devel-
opment process. Many knowledge engineering (KE) methodologies have been devel-
oped with an emphasis on the use of models, for example CommonKADS [2], MIKE 
[4], Protégé [5], and KARL [4]. 

Traditional KE techniques were widely used to construct expert systems – systems 
built from the knowledge of one or more experts – essentially, a process of knowledge 
transfer [3]. This is the development process of the first generation of expert systems, 
in which the knowledge of the expert is directly transferred into the knowledge base 
in the form of rules. The disadvantage of this approach is that the knowledge of the 
expert is captured in the form of hard codes within the system with little understand-
ing of how they are linked or connected with each other [2]. This creates a new prob-
lem if the knowledge base is to be updated as changes require substantial effort in 
reconstituting the coded rules in order to implement the needed changes.   

KE is no longer simply a means of mining the knowledge from the expert’s head 
[2]. It now encompasses “methods and techniques for knowledge acquisition, model-
ling, representation and use of knowledge” [2]. The shift towards the modelling ap-
proach has also enabled knowledge to be re-used in different areas of the same do-
main [3]. In the past, most knowledge systems had to be developed from scratch 
every time a new system was needed, and it could not interact with other systems in 
the organization.  The paradigm shift towards a modelling strategy has resulted in 
reducing development costs [2]. 

3   Knowledge Modelling 

Knowledge modelling is used in knowledge acquisition activities as a way of structur-
ing projects, acquiring and validating knowledge and storing knowledge for future use 
[6]. Knowledge models are structured representations of knowledge. They use sym-
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bols to represent pieces of knowledge and their relationships. Knowledge models are 
as follows: (1) symbolic character-based languages – logic; (2) diagrammatic repre-
sentations – networks and ladders; (3) tabular representations – matrices and frames 
and (4) structured text – hypertext. Most models are constructed from knowledge 
objects such as concepts, instances, processes (tasks, activities), attributes and values, 
rules and relations.  

Knowledge representation is one of the fundamental topics in the area of artificial 
intelligence (which investigates representation techniques, tools and languages). 
Knowledge about the domain and the implementation independent reasoning-process 
of the KBS however is usually addressed through the use of ontologies and problem-
solving methods. There are five prominent representation techniques widely used in 
developing KBSs; they are: attribute-value pairs, object-attribute-value triplets, se-
mantic networks, frames and logic.  

By analysing the knowledge objects and representation techniques described ear-
lier in this section, it will be noticed that they have similar concepts to those adopted 
for object-oriented modelling. Examples of these concepts are: objects, attributes, 
class, subclass, relationship, instances and others. Though these concepts have differ-
ent meanings in different techniques, in most cases they refer to a similar thing. This 
paves the way to consider using object-oriented techniques as the standard means of 
representing them.  

3.1   Ontology and Problem-Solving Method  

Ontologies and Problem-Solving Methods (PSMs) enable the construction of KBSs 
through reusable components across domains and tasks [7]. Systems developers in the 
KE community are currently trying to adopt component-based development by incor-
porating ontologies and PSMs in order to deploy KBSs faster.  

Ontologies are used to represent domain knowledge in knowledge-based programs. 
This is achieved using formal declarative representations of the domain knowledge; 
that is sets of objects and their describable relationships [8]. In the context of  
knowledge modelling, ontology defines the content-specific knowledge representation  
elements such as domain-dependent classes, relations, functions and object constants 
[7]. Researchers in the area of conceptual modelling and knowledge modelling have 
started to realise the importance of ontology in developing domain models since the 
underlying principle of modelling is to achieve agreed representations in a unified 
manner for the domains in which they are investigating. The works of Gomez-Perez 
and Benjamins [7], Gruber [8] and Kende [9] demonstrate such efforts to use  
ontologies. 

PSMs describe the reasoning-process (generic inference patterns) at an abstract 
level independent of the representation formalism (e.g. rules, frames etc.) [5], [7]. 
PSMs have influenced the leading knowledge-engineering frameworks such as Task 
Structures, Rôle-Limiting Methods, CommonKADS, Protégé, MIKE, Components of 
Expertise, EXCEPT, GDM and VITAL [7]. Most of these frameworks suggest that a 
PSM: decomposes the whole reasoning task into elementary inferences that are easy 
to understand, defines the types of knowledge that will be used by the inference steps 
to be completed, and defines the control mechanisms and flow of knowledge among 
the inferences.  
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3.2   Knowledge Modelling Techniques  

The importance of knowledge modelling in developing KBSs has been discussed by 
Schreiber et al [2]. They argue that models are important for understanding the work-
ing mechanisms within a KBS; such mechanisms are: the tasks, methods, how knowl-
edge is inferred, the domain knowledge and its schemas. Modelling contributes to the 
understanding of the source of knowledge, the inputs and outputs, the flow of knowl-
edge and the identification of other variables such as the impact that management 
action has on the organizational knowledge. Using conceptual modelling, systems 
development can be faster and more efficient through the re-use of existing models 
for different areas of the same domain.  Therefore, understanding and selecting the 
modelling technique that is appropriate for different domains of knowledge will en-
sure the success of the KBS being designed. 

Amongst the many techniques used to model knowledge, the most common are 
CommonKADS, Protégé 2000, the Unified Modeling Language (UML), and Multi-
perspective modelling. 

CommonKADS has become the de facto standard for knowledge modelling and is 
used extensively in European research projects. It supports structured KE techniques, 
provides tools for corporate knowledge management and includes methods that per-
form a detailed analysis of knowledge intensive tasks and processes.  A suite of mod-
els is at the core of the CommonKADS methodology [2]. The suite supports the mod-
elling of the organization, the tasks that are performed, the agents that are responsible 
for carrying out the tasks, the knowledge itself, the means by which that knowledge is 
communicated, and the design of the knowledge management system. Common-
KADS incorporates an object-oriented development process and uses UML notations 
such as class diagrams, use-case diagrams, activity diagrams and state diagrams. 
CommonKADS also has its own graphical notations for task decomposition, inference 
structures and domain schema generation [2].  

It has become a trend for system developers and researchers in KE to adopt object 
oriented modelling in developing conceptual models for knowledge systems [10] [11] 
[12]. A careful analysis of the literature shows that they have all been influenced by 
CommonKADS – an approach that is highly favoured, since it encourages the use of 
object-oriented development and the notations from UML. 

Protégé was developed for domain specific applications [5] at Stanford Medical In-
formatics. Protégé 2000 is defined as “an extensible, platform-independent environ-
ment for creating and editing ontologies and knowledge bases” [13]. The Protégé 
2000 knowledge modelling environment is a frame-based ontology editing tool with 
knowledge acquisition tools that are widely used for domain modelling.  

The Unified Modeling Language (UML) together with the Object Constraint Lan-
guage (OCL) is the d-facto standard for object modelling in software engineering as 
defined by the Object Management Group (OMG). UML is a general-purpose model-
ling language that covers a wide spectrum of different application domains. UML is 
incorporated in other mainstream techniques such as CommonKADS and Multi-
perspective modelling for knowledge modelling purposes. Multi-perspective model-
ling enables a number of techniques to be used together, each technique being the 
most appropriate for modelling that particular aspect of knowledge [14]. It has its 
roots in software engineering (multiple-view technique).  
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3.3   Current Trends  

Although KBSs are developed using knowledge engineering techniques, the model-
ling aspects of it are largely dependent on software engineering modelling languages. 
Most of the modelling techniques adopted, use a mix of notations derived from differ-
ent modelling languages. The object-oriented paradigm has influenced systems 
development activities in software engineering and this trend has also been reflected 
in knowledge engineering methodologies such as CommonKADS [2], MOKA [12] 
and KBS developments in general [10], [15] and [16]. However, the main adopters of 
UML for knowledge modelling are CommonKADS [2] and MOKA [12]. The MOKA 
Modelling Language (MML) is an extension of UML that represents engineering 
product design knowledge at a user level for deployment in knowledge-based engi-
neering applications. It provides default meta-models for the product and design proc-
ess so as to manage engineering knowledge. However, it is an informal extension to 
UML and does not fulfill the OMG’s requirements for an extension mechanism; these 
are presented in section 5. 

Object oriented methods are gaining in popularity because of their expressiveness, 
flexibility and ease-of-use. One of UML’s important features is that it is an extensible 
language brought about by the application of profiles. This makes UML one of the 
favoured techniques for knowledge modelling, for both the methodological aspect of 
KBS development and its standardisation. Thus, extensions to UML, can be formally 
introduced using UML Profiles for knowledge modelling.  

4   Need for UML Extension  

The major problem with knowledge modelling is that there is no standard technique 
available to model the knowledge for developing a knowledge-based system. Most of 
the techniques used by the researchers in the field of knowledge engineering are 
adapted from the software engineering community. The techniques used in knowledge 
modelling are project based using a mix of notations such as UML, IDEF, SADT, 
OMT, Multi-perspective Modelling and so on. Examples mentioned earlier are the 
CommonKADS methodology and Multi-perspective Modelling. Having recognised 
the importance of standardising knowledge modelling, OMG have started to work on 
the process of production rule representation [17] and knowledge-based engineering 
services for engineering design [18]. Benefits of having a standardised approach are: 
better tool support for designing the conceptual models, a large user base that is famil-
iar with the language, and training is made easier by having many related publications 
focused on the standard. Furthermore, with a standards body monitoring evolving use, 
the standard remains live and relevant to industry.   

Knowledge system projects are extremely specialised, requiring the team members 
to have knowledge of both the problem domain and the development tools. As a result 
the team members are highly skilled individuals, and this poses a great problem to the 
overall project if they should leave the team early in the development or maintenance 
period [19]. Having a standard modelling notation would help overcome such  
problems as new team members could quickly comprehend the design of the system.  
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Another important factor to consider is that many system analysis and design 
courses these days are teaching object-oriented modelling techniques as a tool for 
systems modelling and development. The main influence is the growing importance 
of object-oriented programming languages like Java in systems development. Because 
of the formal training received and the adoption of object-oriented programming by 
this generation of system analyst, most will have the knowledge of UML and use it 
for modelling purposes. 

In addition to this, enterprise systems these days are an integration of software 
tools built on different platforms with the ability to communicate with each other. 
Most of these systems especially the new ones are built on platforms that support 
object-oriented languages, model driven architectures, object-based modelling etc. 
Knowledge-based systems are no longer stand-alone systems, but are part of the en-
terprise group of systems. As there is no standard way of modelling knowledge sys-
tems using knowledge engineering techniques, there is a need to extend those that 
have been standardised in software engineering. This promotes the use of a common 
modelling language, so that the vision of integration, reusability and interoperability 
within an enterprise’s system will be achieved. It is proposed to model knowledge 
using an extension to UML.  

UML is widely adopted as the object oriented way for systems development and 
has been deployed in other domains such as real-time systems, hypermedia design, 
embedded systems and ontology modelling. There are arguments that UML semantics 
are not well defined [20][21] compared to formal methods and these are being ad-
dressed by the OMG in developing UML version 2.0. This new version will have 
enhanced meta-model concepts and improved semantics. Developing UML Profiles 
for knowledge modelling will enable KBS developers to use UML in a formal and 
systematic manner. This can be achieved through the means of developing UML 
profiles with precisely defined notations, semantics and syntax which together enable 
this extension to be formally integrated into the existing profiles of UML (and adheres 
to the profiles requirements proposed by OMG [22]).  

The UML is a general-purpose modelling language that covers a wide range of dif-
ferent application domains. While this feature might be adequate for modelling in a 
broader area, some domain-specific concepts and techniques need a more specialised 
refinement to the existing construct of the language [22]. This is achievable through 
the usage of the extension mechanism provided by UML known as a profile. 

5   Profile Extension Mechanism   

The OMG [23] has defined two mechanisms for extending the UML: profiles and 
metamodel extensions both of which are known (confusingly) as profiles.  

Profiles are sometimes referred to as the “lightweight” extension mechanism of 
UML [22]. It contains a predefined set of Stereotypes, TaggedValues, Constraints, 
and notation icons that collectively specialize and tailor the UML for a specific do-
main or process. The main construct in the profile is the stereotype that is purely an 
extension mechanism. In the model, it is marked as <<stereotypes>> and has the same 
structure (attributes, associations, operations) defined by the metamodel that describes 
it. However, the usage of stereotypes is restricted. The semantics and the structure 
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cannot be changed, and the introduction of new elements to the metamodel are not 
permitted [24]. The “heavyweight” extension mechanism to UML known as the 
metamodel extension is defined through the Meta-Object Facility (MOF) specification 
[25] which involves the process of defining a new metamodel. Using this extension, 
new metaclasses and metaconstructors can be added to the UML metamodel. This 
extension is a more flexible approach as new concepts may be represented at the 
metamodel level. So, profile based extensions must comply with the standard seman-
tics of the UML model, but no such restriction is imposed on the MOF based exten-
sions which can define a completely new metamodel.  

UML Profile for Enterprise Application Integration (EAI), UML Profiles for 
CORBA, UML Profile for Enterprise Distributed Object Computing (EDOC), UML 
Testing Profile, and UML Profile for Schedulability, Performance and Time are some 
of the formal profiles developed by OMG. 

6   UML Knowledge Modelling Profile    

The scope of the profile described below is adapted from [26]. The aim of the UML 
Knowledge Modelling Profile is to define a language for designing, visualizing, speci-
fying, analyzing, constructing and documenting the artifacts of knowledge-based 
systems. It is a knowledge modelling language that can be used with all major object 
technologies and applied to knowledge-based systems in various application domains 
and task types. The UML profile is based on the UML 2.0 specifications and is de-
fined by using the profile extension approach of UML.  It is being designed  with the 
following principles in mind: UML integration - as a real UML based profile, the 
knowledge modelling profile is based on the metamodel provided in the UML super-
structure and follows the principles of UML profiles as defined in UML 2.0.  

6.1   Profile Design – XMF Approach   

The XMF (eXecutable Meta-modelling Language) is an object-oriented meta-
modelling language, and is an extension to existing standards for meta-models such as 
MOF, OCL and QVT, which are also defined by OMG. XMF exploits the features of 
these standards and adds a new dimension that allows them to be executable using an 
associated XMF software tool.  The most comprehensive use of these standards are 
seen in the UML in which its meta-models are described using MOF. Details of XMF 
can be found in [27]. The XMF approach to profile creation can be divided into three 
steps: the derivation of an abstract syntax model, a description of the semantics, and a 
presentation of the profile’s concrete syntax. XMF supports stereotypes and tagged 
values, but in a way that is significantly more controllable and powerful. XMF en-
ables “meta profiles” to be constructed, in which stereotyped elements are true in-
stances of specialised concepts. 

Abstract Syntax 
The abstract syntax model describes the concepts in the profile and their associations. 
It defines the rules that determine its validity. The processes involved in creating the 
abstract syntax model are: 
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• Identifying the concepts including the related rules. Reusing an existing BNF defini-
tion of the profile domain is an alternative at this stage. 

• Modelling concepts – this involves the process of creating an abstract syntax model 
using the identified concepts.  

• Defining the well-formed-ness rules of the profile in OCL – this will help in ruling 
out illegal models.  

• Defining the operation and the queries related to the profile. 
• Validating and testing the profile using an object diagram and relevant tools. 

Semantics 
The semantics describe the meanings of concepts within the profile in terms of behav-
iour, static properties or how it may be translated into another language. The seman-
tics are a core part of the profile’s meta-model and replace formal (mathematical) 
methods that are often difficult to comprehend by the majority of users and with 
which it would be difficult to describe the interrelationships within the meta-model. In 
XMF there are four types: 

• Translational – concepts in one language are translated into the concepts of another 
language, both of which have precise semantics. 

• Denotational – modelling the mapping to semantic domain concepts.  
• Operational – modelling the operational behaviour of language concepts. 
• Extensional – extending the semantics of existing language concepts. 

Concrete Syntax 
The concrete syntax is a means of presenting the abstract syntax to end users of the 
profile, using either textual or diagrammatic forms. 

• The textual form of the profile is modelled using the Extended Backus-Naur Form 
(EBNF). 

• The diagrammatic form involves synchronised mapping between the modelling ele-
ments and the diagram elements (boxes, lines and shapes). This is a new technique in-
troduced into the meta-model by XMF. 

The profile is designed based on the XMF specifications and is defined using the 
meta-class sub-classing approach of the XMF core meta-model, XCore. This paper 
only concentrates on the creation of the abstract syntax model of the profile. It ex-
cludes the processes of defining operations, queries and tool validation for the profile, 
as these discussions are more appropriate when executing the models and this is not 
the primary motivation of this paper. 

6.2   Identification of Concepts 

The discussion in this section mainly refers to the CommonKADS methodology for 
KBS development [2]. Tasks are the main categorisation of action that need to be 
performed by the KBS; typically this refers to the “what we want the system to do”. 
Each task type will have their own terminology, task methods, inputs, outputs, infer-
ence mechanism being used, and the type of knowledge used; this is presented in [2]. 
Current studies on extending UML to model knowledge only concentrates on certain 
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task types such as product design in MOKA [12] and UML-based product configura-
tion design [10]. There are no specific studies being conducted in creating a generic 
profile that can be used for different task types; research now underway at York is 
focusing on this work. The following important knowledge modelling concepts have 
been identified from the literature [2] and are itemised in Table 1. 

The authors believe that the level of abstraction is appropriate, and it naturally fits 
a KBS design, which is based on the PSM and ontology discussed earlier. Of course 
trying to maintain an overall picture of a complex system, including the interactions 
between its parts, will remain difficult for a human to perform. A re-engineering of 
the CommonKADS based system is also possible using the concepts from this profile. 

6.3   Abstract Syntax Model 

The abstract syntax of the knowledge modelling language has been derived using the 
modelling concepts shown in Table 1. The CommonKADS language has been 
adopted for specifying knowledge models that are defined in the BNF notation [2]. 
That BNF description has been translated into a UML model. In its current form it is a 
model of the abstract syntax of a knowledge modelling language, becoming a com-
plete model of the language: a meta-model. Due to the size, and repetitive nature of 
the concepts described using BNF, and the complexity of the model, it has been con-
densed to show only the important features of modelling knowledge concepts.  

Table 1. Main Knowledge Modelling Concepts  

Modelling Concept Description 
Concept (class) Class that represents the category of things  
Inference The lowest level of functional decomposition  

consisting of primitive reasoning steps 
Inference Method Method for implementing the inference 
Transfer Function Transfers information between the reasoning agent 

and external entities (system, user) 
Task Defines the reasoning function 
Task Method Describes the realization of the task through subfunc-

tion decomposition 
Static Knowledge Role Specifies the collection of domain knowledge that is 

used to make the inference 
Dynamic Knowledge Role Run-time inputs and outputs of inferences 
Rule Type Categorization and specification of knowledge 
Rule Expressions that involve an attribute value of a  

concept 
Knowledge Base Collection of data stores that contains instances of 

domain knowledge types 

The Domain Concept package within the Knowledge Modelling package describes 
the concept constructs of the profile that are related to knowledge elements. This 
package is shown in Fig.1. 
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Fig. 1. Domain Concept Package 

The Knowledge Base package of the profile describes the modelling of a knowl-
edge base that represents instances of knowledge elements (instances of rule type) 
within the domain concepts. These instances are important as they contain the actual 
knowledge on which the KBS reasoning process is based.  Knowledge elements 
within the knowledge base are accessed by an inference through a static role. This 
package is shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Knowledge Base Package 

The Inference package of the profile describes the inference, inference method, 
task, task method, transfer function and both the static and dynamic knowledge roles. 
The inference package plays a pivotal role in designing the KBS as it defines the 
inference structure of the system, the type of knowledge used in the reasoning process 
and the task associated with the execution of the inference. An important point to note 
here is that the KBS is designed independently of the target implementation platform 
and inference engines, overcoming the difficulties of reusing implementation specific 
designs. This package is shown in Fig.3. 

K n o w le d g e  B a s e  P a c k a g e

R u le  T y p e

K n o w le d g e  B a s e

R u le  T y p e  E x p re s s io n

T u p le

in p u t:  S t r in g

S ta t ic  R o le T a b le
(F ro m  X M F )

C o n ta in e r
(F ro m  X M F )

*
1 ..*

1 . .*

1 . .*

k n o w le d g e
e le m e n ts

tu p le s

e x p r e s s io n s

C o n s tra in t
(F ro m  X M F )

D o m a in  C o n c e p t  P a c k a g e

T u p le

A x io m

C o n c e p t

C la s s
( F r o m  X M F )

C o n s t r a in t
( F r o m  X M F )

r o le

*

r u le s

*a x i o m s

D y n a m ic  R o le



230 M.S. Abdullah et al. 

 

Inference Package

Concept

name: String
input: String
output: String

Task

Class
(From XMF)

name: String
decomposition: String
intermediate role: string

Task Method

name: String
dynamic input: String
dynamic output: String
static role: String

Inference

communicationtype:
{provide, receive,
obtain, present}

Transfer Function

input: String

Static Roleinput: String
output: String
domain mapping: String

Dynamic Role

Knowledge
BaseClass

(From XMF)

method

1..*

0..1

*roles
roles

<<ordered>>

0..1

*

knowledge
elements

*

input

output

1..*

1..*

*

1..*

1..*

1..*

 

Fig. 3. Inference Package 

R u le  T yp e

R ule  T ype

D ecis ion  T ab le

C onstra in t R u le
T ype

C lass
(F rom  X M F )

C lass
(F rom  X M F)

na m e : S tr ing
an tece de n t: S trin g
con seq ue n t: S tr ing
con ne c tion : S trin g

Im plica tion  R u le  T ype

C lass
(F rom  X M F)

*
*

ru les ru les
*

ru les

N am edE lem ent
(F rom  X M F)

 
 

Fig. 4. Rule Type Package 
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The Rule Type package (shown in Fig. 4) within the profile describes the model-
ling of rules. There are three types of rule: constraint rule, implication rule and deci-
sion table. A decision table is an addition to the used set of rule types. It is introduced 
here because certain rules are best expressed in the form of a decision table. This 
paper concentrates on rule-based KBSs; Case-Based Reasoning (CBR), fuzzy-based 
logic, neural network systems are not considered here. 

6.4   Model Extension  

The knowledge modelling profile concept extends the existing meta-models of XMF 
by defining the profile’s abstract syntax. There are five places where the profile can 
be viewed as an extension to XMF and these are: Class, Container, Table, Named 
Element and Constraints, all of which are central to the Core XMF meta-model.  

The knowledge modelling class concept is viewed as a special class that is a sub-
class of the XMF Class. This enables the concept to inherit all the features of a class 
and allows it to define additional constraints such as “concepts do not have any opera-
tions or methods”.  The implication rule type, decision table and constraint rule type, 
are also examples of this. The inference package of the profile (which has the task, 
task method, inference, dynamic role, static role, and the transfer function concepts) 
can be viewed as a subclass of an XMF Class. This allows operations related to ob-
jects to be expressed, such as an execute inference call from the task method, the 
execution of the inference process and the access to knowledge in the knowledge base 
through the static role and at the same time allows the inference package elements to 
specify attributes.  

Constraint class is a subclass of the XMF meta-model that incorporates profile 
concepts such as axioms and rule type expressions. All these concepts need the ability 
to express constraints and this class allows for this. Knowledge base is a subclass of 
the Container class of XMF. It has a ‘content’ slot that is a table. This is a natural 
choice for a subclass as the knowledge base is actually a collection of tables grouped 
together in order to store rule type instances. The table class of XMF is extended to 
incorporate the profile’s concepts of tuple. 

7   Conclusion and Future Work     

Managing knowledge through knowledge-based systems is an important part of an 
enterprise’s knowledge management initiative. Knowledge-based systems have 
evolved from being stand-alone machines to being part of the enterprise’s group of 
systems. The process of constructing a KBS is similar to that required by other soft-
ware systems, with conceptual modelling playing an important role in the develop-
ment process. Software engineering has adopted UML as a standard for modelling, 
but the field of knowledge engineering is still searching for the right technique. UML 
can be adopted for knowledge modelling by exploiting the profile extension mecha-
nism defined by OMG. This paper has described the process of creating such an ex-
tension by basing the design of the knowledge modelling profile on that of the XMF 
framework. This is a novel approach in profile design as the XMF approach is an 
extension to existing standards for meta-modelling such as MOF, OCL and QVT, 
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which are defined by OMG. The creation of a profile is important as it allows a KBS 
to be designed using an object-oriented approach.  

Developing a profile involves many steps as listed in Section 6 of this paper. The 
future work in this area involves the specification of the profile’s well-formed-ness 
rules, semantics and construction of the concrete syntax model. Both the latter activi-
ties involve the use of the XMF tool, which is in its final stage of development. The 
profile will be validated using this tool and it is hoped to make the profile accessible 
to all UML and MOF compliant tools. The profile’s ability to model the requirements 
of KBSs has only been tested on a few simple case studies. Testing the profile in a 
number of real-world situations would be beneficial, it would identify any limitations 
and assist in the refinement of the profile.  Together these case studies should provide 
a wide range of applications in order to validate the generic nature of the profile. 

Acknowledgement. The authors gratefully acknowledge the provision of a fellowship 
from Universiti Utara Malaysia that has enabled this research to take place, and are 
grateful to Xactium for early access to XMF. Details of XMF can be found at 
http://albini.xactium.com. 

References 

1. Speel, P., Schreiber, A. Th., van Joolingen, W., and Beijer, G.: Conceptual Models for 
Knowledge-Based Systems, in Encyclopedia of Computer Science and Technology. 2001, 
Marcel Dekker Inc, New York. 

2. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., de Velde, 
W.V. and Wielinga, B.: Knowledge Engineering and Management: The CommonKADS 
Methodology. 1999, Massachusetts: MIT Press. 

3. Studer, R., Benjamins, R.V., and Fensel, D.: Knowledge Engineering: Principles and 
Methods. Data & Knowledge Engineering, 1998. 25: p. 161-197. 

4. Angele, J., Fensel, D., Landes, D., Studer, R.: Developing Knowledge-Based Systems with 
MIKE. J of Automated Software Engineering, 1998. 5(4): p. 389-418. 

5. Grosso, W.E., Eriksson, H., Fergerson, R.W., Gennari, S., Tu, S., Musen, M.A.:  Knowl-
edge Modelling at the Millennium (The Design and Evolution of Protege 2000). 1999, 
Stanford Medical Institute. 

6. Milton, N.: Types of Knowledge Models. 2002. Accessed at http://www.epistemics.co.uk/ 
Notes/90-0-0.htm 

7. Gomez-Perez, A., Benjamins,V.R.: Overview of Knowledge Sharing and Reuse Compo-
nents: Ontologies and Problem-Solving Methods. in IJCAI-99 Workshop on Ontologies 
and Problem-Solving Methods (KRR5). 1999. Stockholm, Sweden. 

8. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. 
1993, Report KSL-93-04, Stanford University. 

9. Kende, R.: Knowledge Modelling in Support of Knowledge Management. Lecture Notes in 
Artificial Intelligence, 2001. 2070: p. 107-112. 

10. Felfernig, A., Friedrich, G.E., Jannach, D.: Generating product configuration knowledge 
bases from precise domain extended UML models. in 12 th International Conference on 
Software Engineering and Knowledge Engineering (SEKE'00). 2000. Chicago, USA. 



 Developing a UML Profile for Modelling Knowledge-Based Systems 233 

 

11. Manjarres, A., Pickin, S., Mira, J.: Knowledge model reuse: therapy decision through spe-
cialisation of a generic decision model. Expert Systems with Applications, 2002. 23(2):  
p. 113-135. 

12. Stokes, M., Managing Engineering Knowledge: MOKA - Methodology for Knowledge 
Based Engineering Applications. 2001, London, UK: Professional Engineering and 
Publishing Limited. 

13. Protege,: Protege Frequently Asked Question. 2002. Accessed at http://protégé.stanford. 
edu/faq.html 

14. Kingston, J. and A. Macintosh, Knowledge management through multi-perspective model-
ling: representing and distributing organizational memory. Knowledge-Based Systems, 
2000. 13: p. 121-131. 

15. Chung, L., Subramaniam, N.: Adaptable architecture generation for embedded systems. 
Journal of Systems and Software, 2003. 17(3): p. 271-295. 

16. Kalogeropoulos, D.A., Carson, E.R., Colinson, P.O.: Towards Knowledge-Based Systems 
in Clinical Practice: Development of an integrated Clinical Information and Knowledge 
management Support System. Computer Methods and Programs in Biomedicine, 2003. 72: 
p. 65-80. 

17. OMG: Production Rule Representation- Request for Proposal. 2003 
18. OMG: KBE Services for Engineering Design- Request for Proposal. 2004 
19. Gill, G.T. Early Expert Systems: Where Are They Now?.  MIS Quarterly, 19, 51-81. 
20. Kobryn, C.: A Standardization Odyssey. Communications of the ACM, 1999. 42(10): p. 

29-37. 
21. Steimann, F., Kuhne, T.: A Radical Reduction of UML's Core Semantics. Lecture Notes in 

Computer Science, 2002. 2460: p. 34-48. 
22. OMG: Requirements for UML Profile. 1999.  
23. OMG: Unified Modeling Language specification (version 1.4). 2001. 
24. Perez-Martinez, J.E.: Heavyweight extensions to the UML metamodel to describe the C3 

architectural style. ACM SIGSOFT Notes, 2003. 28(3). 
25. OMG: MOF Specification version 1.4. 2002. 
26. OMG: UML 2.0 Testing Profile specification. 2003. 
27. Clark, T., Evans, A., Sammut, P., Willians, J.: Metamodelling for Model-Driven Develop-

ment (draft): To be published. 2005 
 



Author Index

Abatlevi, Cem, 159
Abdullah, Mohd Syazwan, 220
Almeida, João Paulo, 174

Barzdins, Janis, 62
Benest, Ian, 220
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Systä, Tarja, 108

Tekinerdoğan, Bedir, 159
Tichy, Matthias, 47

Unland, Rainer, 77

Valduriez, Patrick, 33
van den Berg, Klaas, 139
van Sinderen, Marten, 174

Wagelaar, Dennis, 189

Zhao, Liping, 1


	Frontmatter
	Designing Application Domain Models with Roles
	Model Bus: Towards the Interoperability of Modelling Tools
	Modeling in the Large and Modeling in the Small
	Model-Driven Development of Reconfigurable Mechatronic Systems with {\sc Mechatronic~UML}
	Model Transformation Language MOLA
	A Graphical Notation to Specify Model Queries for MDA Transformations on UML Models
	Describing Horizontal Model Transformations with Graph Rewriting Rules
	Open MDA Using Transformational Patterns
	``Weaving'' MTL Model Transformations
	MISTRAL: A Language for Model Transformations in the MOF Meta-modeling Architecture
	Integrating Platform Selection Rules in the Model Driven Architecture Approach
	Platform-Independent Modelling in MDA: Supporting Abstract Platforms
	Context-Driven Model Refinement
	A UML Profile for OWL Ontologies
	Developing a UML Profile for Modelling Knowledge-Based Systems
	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




