

Lecture Notes in Computer Science 3599
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Uwe Aßmann Mehmet Aksit
Arend Rensink (Eds.)

Model Driven
Architecture

European MDA Workshops: Foundations
andApplications, MDAFA 2003 and MDAFA 2004
Twente, The Netherlands, June 26-27, 2003 and
Linköping, Sweden, June 10-11, 2004
Revised Selected Papers

13

Volume Editors

Uwe Aßmann
Technische Universität Dresden
Fakultät Informatik
Institut für Software- und Multimediatechnik
01062 Dresden, Germany
E-mail: uwe.assmann@inf.tu-dresden.de

Mehmet Aksit
Arend Rensink
University of Twente
Department of Computer Science
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: {rensink,aksit}@ewi.utwente.nl

Library of Congress Control Number: 2005930489

CR Subject Classification (1998): C.2, D.2, D.3, F.3, C.3, H.4

ISSN 0302-9743
ISBN-10 3-540-28240-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28240-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11538097 06/3142 5 4 3 2 1 0

Preface

Model-Driven Architecture (MDA) is an initiative proposed by the Object Man-
agement Group (OMG) for platform-generic software development. MDA sep-
arates the specification of system functionality from the implementation on a
specific platform. It is aimed at making software assets more resilient to changes
caused by emerging technologies. While stressing the importance of modeling,
the MDA initiative covers a wide spectrum of research areas. Further efforts are
required to bring them into a coherent approach based on open standards and
supported by matured tools and techniques.

This volume contains the selected papers of two workshops on “Model-Driven
Architecture – Foundations and Applications” (MDAFA): MDAFA 2003 held
at the University of Twente, Twente, The Netherlands, June 26–27, 2003, and
MDAFA 2004 held at Linköping University, Linköping, Sweden, June 10–11,
2004. The goal of the workshops was to understand the foundations of MDA, to
share experience in applying MDA techniques and tools, and to outline future
research directions. The workshops organizers encouraged authors of accepted
papers to re-submit their papers to a post-workshop reviewing process; 15 of
these papers were accepted to appear in this volume on MDA.

Our special thanks go to the program committee, which was willing to re-
view the papers a second time, and to our assistants Henrik Larsson and Bodil
Mattson-Kihlström, who took a great share of the workshop organization. We
would also like to thank the supporters of the workshop, in particular the OMG,
for taking part in the enthusiasm about scientific workshops on MDA. One of the
invited speakers of MDAFA 2004, Dr. Liping Zhao from the Victoria University
of Manchester, contributed her paper “Designing Application Domain Models
with Roles” to the volume, which sheds new light on the relationship of MDA
and role modeling. Thanks a lot.

In autumn 2004, the workshop joined forces with other European workshops
on MDA, creating the new European Conference on Model-Driven Architec-
ture – Foundations and Applications (ECMDA-FA, http://www.ecmda-fa.org).
It will take place for the first time on Nov. 7–10, 2005 in Nuremberg, Germany,
and is planned as a yearly conference, collecting papers on the foundations and
applications of MDA. See you in Nuremberg!

June 2005 Uwe Aßmann, Arend Rensink, Mehmet Aksit

Organization

Referees

Mehmet Aksit, University of Twente, The Netherlands
Jesper Andersson, University of Växjö, Sweden
Uwe Aßmann, Technische Universität Dresden, Germany
Klaas van den Berg, University of Twente, The Netherlands
Jorn Bettin, SoftMetaWare, The Netherlands
Jean Bézivin, University of Nantes, France
Jan Bosch, University of Groningen, The Netherlands
Francois Bry, Munich University, Germany
Paul Clements, Software Engineering Institute, USA
Krzysztof Czarnecki, University of Waterloo, Canada
Pär Emanuelson, Ericsson, Sweden
Gregor Engels, University of Paderborn, Germany
Peter Fritzson, University of Linköping, Sweden
Wolfgang Hesse, University of Marburg, Germany
James Hunt, Aicas, Germany
Reiner Hähnle, Chalmers University of Technology, Sweden
Jean-Marc Jezequel, IRISA, France
Anneke Kleppe, Klasse Objecten, The Netherlands
Antonio Kung, Trialog, Paris, France
Tom Mens, University of Mons-Hainaut, Belgium
Arend Rensink, University of Twente, The Netherlands
Kristian Sandahl, University of Linköping, Sweden
Bedir Tekinerdogan, University of Twente, The Netherlands
Gerd Wagner, Technical University Eindhoven, The Netherlands
Andrew Watson, Vice President and Technical Director at OMG, USA
Kasper Østerbye, Copenhagen, Denmark
Steffen Zschaler, Technische Universität Dresden, Germany

Sponsoring Institutions

– Object Management Group (OMG, http://www.omg.org)
– REWERSE Network of Excellence of the European 6th framework pro-

gramme (Reasoning on the Web, http://www.rewerse.net), in particular
working group I3 “Composition and Typing for Reasoning Languages on
the Web”

– HIDOORS EU project (High Integrity Distributed Object-Oriented Real-
Time Systems, http://www.hidoors.org)

VIII Organization

– RISE project (Research on Integrational Software Engineering,
http://www.ida.liu.se/˜rise), financed by Swedish Stiftelsen för Strategisk
Forskning (SSF)

– SWEBPROD project (Semantic Web for Production,
http://www.ida.liu.se/˜rise/SwebProd), financed by Vinnova Sweden.

Model-Driven Architecture, MDA, UML, XMI, OMG, and their correspond-
ing logos are registered trademarks or trademarks of the Object Management
Group, Inc. in the United States, in the European Union, and in other countries.

Table of Contents

Designing Application Domain Models with Roles
Liping Zhao . 1

Model Bus: Towards the Interoperability of Modelling Tools
Xavier Blanc, Marie-Pierre Gervais, Prawee Sriplakich 17

Modeling in the Large and Modeling in the Small
Jean Bézivin, Frédéric Jouault, Peter Rosenthal, Patrick Valduriez . . . 33

Model-Driven Development of Reconfigurable Mechatronic Systems
with Mechatronic UML

Sven Burmester, Holger Giese, Matthias Tichy . 47

Model Transformation Language MOLA
Audris Kalnins, Janis Barzdins, Edgars Celms . 62

A Graphical Notation to Specify Model Queries for MDA
Transformations on UML Models

Dominik Stein, Stefan Hanenberg, Rainer Unland 77

Describing Horizontal Model Transformations with Graph Rewriting
Rules

Alexander Christoph . 93

Open MDA Using Transformational Patterns
Mika Siikarla, Kai Koskimies, Tarja Systä . 108

“Weaving” MTL Model Transformations
Raul Silaghi, Frédéric Fondement, Alfred Strohmeier 123

MISTRAL: A Language for Model Transformations in the MOF
Meta-modeling Architecture

Ivan Kurtev, Klaas van den Berg . 139

Integrating Platform Selection Rules in the Model Driven Architecture
Approach

Bedir Tekinerdoğan, Sevcan Bilir, Cem Abatlevi 159

Platform-Independent Modelling in MDA: Supporting Abstract
Platforms

João Paulo Almeida, Remco Dijkman, Marten van Sinderen,
Lúıs Ferreira Pires . 174

X Table of Contents

Context-Driven Model Refinement
Dennis Wagelaar . 189

A UML Profile for OWL Ontologies
Dragan Djurić, Dragan Gašević, Vladan Devedžić,
Violeta Damjanović . 204

Developing a UML Profile for Modelling Knowledge-Based Systems
Mohd Syazwan Abdullah, Chris Kimble, Richard Paige, Ian Benest,
Andy Evans . 220

Author Index . 235

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 1 – 16, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Designing Application Domain Models with Roles

Liping Zhao

School of Informatics, University of Manchester,
M60 1QD, Manchester, United Kingdom
liping.zhao@manchester.ac.uk

Abstract. This article is motivated by two related observations. First, roles, re-
sponsibilities and collaborators are central to object interactions, and viewing of
objects from these three dimensions can yield a more dynamic and flexible de-
sign than that from the class dimension. Yet the orthodox object modeling ap-
proaches, such as UML, still adopt the class view of objects. Second, models
have become increasingly important in constructing application systems. For
example, OMG’s Model Driven Architecture (MDA) uses models as building
blocks to support application development. Based on the assumption that ob-
ject-oriented approaches will still dominate the development of the MDA mod-
els, this article posits that the new models be oriented towards the roles, not to-
wards the classes; it shows why roles are importance to MDA model design.

1 Why Pure Classes Not Enough

Object-oriented design has been dominated by class design. For example, Meyers [27]
recommended 50 ways to improve programs and designs, but 34 of them are con-
cerned with the design of classes and the rest 16 is about memory management and
compiler optimization. Consequently, object-oriented modeling also focuses on class
modeling [34]. The Unified Modeling Language (UML) [10] provides 12 diagrams
and 8 of them are centered on class diagrams. The rest 4 diagrams, apart from the Use
Case Diagram, are about model management.

The class concept is indeed central to object technology. A class is not only a de-
scription of the objects, but also an implementation technique for data abstraction,
encapsulation and information hiding [23, 24]. The importance of classes to object
technology is clear and undeniable, as Meyer maintained ([26], p.165): “Objects re-
main important to describe the execution of an O-O system. But the basic notion,
from which everything in object technology derives, is class…” Henderson-Seller
([14], p34) also remarked: “In fact, ‘object-oriented’ is really a misnomer because
what we really should be talking about is ‘class-oriented,’ since the essence of the
object-oriented technique is actually the class.”

Despite of its importance, the class dimension is limited in its ability to describe
objects. First, the class view of objects is static. A class is basically a mold for making
objects [26] and classifying objects [41]. Once an object is created for a class, it be-
longs to that class forever, hence “Once an engineer, forever an engineer.” Although
an object may appear to be able to change its type in a polymorphic type hierarchy, it
still cannot change its base class and behavior. Second, the class centered view tends

2 L. Zhao

to place too much emphasis on encapsulation and class boundary, and drives object
design like procedural design. As a result, classes are often over-specified for com-
pleteness.

The limitations of pure classes have long been recognized. As early as in 1989,
Beck and Cunningham [3] already pointed out: “One of the distinguishing features of
object design is that no object is an island. All objects stand in relationship to others,
on whom they reply on services and control 3.” To capture object relationship, they
introduced CRC (Class, Responsibility and Collaboration) cards, an index card tech-
nique invented by Cunningham [8]. Each CRC card describes an object in three di-
mensions: class name, responsibilities and collaborators (Fig. 1). These three dimen-
sions, as Beck and Cunningham 3 stated, identify the role of an object in a design.
Hence the focal point of a CRC card is the role, the centre of object collaboration.
This important connotation was made explicit when Kendall 16 renamed CRC cards
as RRC (Role, Responsibility and Collaboration) cards. Wirfs-Brock [39] has recently
extended her responsibility-driven approach [40] with roles, responsibilities and col-
laborations.

Similar to CRC cards, Reenskaug [31] developed role models for representing ob-
ject collaborations. A role model consists of a set of roles and their interactions. Fig. 2
shows a role model consisting of three roles: Model, View and Controller. Wirfs-
Brock and Johnson [38] noted that there is a many-to-many correspondence between
roles and objects, in that an object may play several different roles and a given role
may be played by different objects.

There is a close relationship between CRC cards and role models, as shown in
Fig. 1 and Fig. 2, such that a role model corresponds to a set of related CRC cards. A
role model captures a set of roles in collaboration whereas a CRC card represents a
particular role in a role model. A role model hence can be used to represent an overall
picture of collaboration with each role being elaborated by a CRC card.

View

Render the Model.
Transform coordinate.

Controller
Model

Controller

Interpret user input.
Distribute control.

View
Model

Model

Maintain problem
related info.

Broadcast change
notification.

View

Render the Model.
Transform coordinate.

Controller
Model

View

Render the Model.
Transform coordinate.

Controller
Model

Controller

Interpret user input.
Distribute control.

View
Model

Controller

Interpret user input.
Distribute control.

View
Model

Model

Maintain problem
related info.

Broadcast change
notification.

Model

Maintain problem
related info.

Broadcast change
notification.

Fig. 1. CRC cards describing the responsibilities and collaborations of Smalltalk’s Model,
View and Controller 3

The basic idea of CRC cards and role models is to capture patterns of object inter-
actions. Wirfs-Brock and Johnson [38] observed that the task in object-oriented de-

 Designing Application Domain Models with Roles 3

sign is to understand, describe and reuse object interaction patterns. From this view-
point, the idea of the design patterns [11] is similar to that of CRC cards and role
models. The main contribution of the design patterns, in comparison with CRC cards
and role models, is that they provide a systematic way of naming and describing ob-
ject interactions. The link between CRC cards, role models and design patterns has
been explored by many researchers [2, 6, 9, 18, 22, 32, 35, 42]. At the core, CRC
cards, role models and design patterns can be viewed as different ways of expressing
roles and collaborations. Cain and Coplien [5] pointed out that the basic abstraction
in object design is role, a longstanding, stable locus of associated responsibilities in a
process. The role concept provides the most coherent view of object collaboration.

Yet, in spite of the above efforts, the concept of roles has not been fully under-
stood; our experience of object-oriented design is still largely limited to class design.
Coplien [7] recently made an appeal for “putting the object back into OOD.” He reit-
erated that the central point of object orientation is the objects themselves.

Controller

View

Model
v

c

m

m

d

ControllerController

ViewView

ModelModel
vv

cc

mm

mm

dd

Fig. 2. A role model describing the collaboration of Smalltalk’s Model, View and Controller 31

This article is motivated by two related observations. First, the role concept has not
gained a widespread acceptance in the orthodox object modeling approaches owing to
the lack of a proper understanding. Second, models have become increasingly impor-
tant in constructing application systems. For example, OMG’s Model Driven Archi-
tecture ® (MDA) uses models as building blocks to support application development.
Based on the assumption that object-oriented approaches will still dominate the de-
velopment of the MDA models, this article argues that the new models be oriented
towards the roles, not towards the classes. We have been doing object design in a
class-oriented way for so long. It is the time that we do it in a role-oriented way and
focus the design on object roles, responsibilities and collaborations. With the above
motivations and discussions, the aim of this article is to introduce role modeling to
MDA model design.

This article is presented in the following order. Section 2 provides a survey of
works on roles and establishes the thesis that roles are a central concept for object
design. Section 3 relates roles to the MDA model design and demonstrates the impor-
tance of roles to the design of application domain models. Section 4 presents a simple
role modeling approach and Section 5 concludes the article.

4 L. Zhao

2 Working with Roles

The meaning of role, according to the Oxford English Dictionary, is an actor’s part in
a play; a person’s or thing’s characteristic or expected function. A role of a person
characterizes the person’s position in a particular situation, when interacting with
other people to perform a particular activity [4]. Role is a natural concept for describ-
ing the dynamics of a person or an object. For example, an academic through the eyes
of her students is a lecturer; a traveler in the eyes of a travel agent and an author by
her readers. Lecturer, traveler and author are the three roles played by the same per-
son. Each role characterizes the person’s position in a context meaningful from a
particular viewpoint. Such a viewpoint is an abstraction, which selects the detail of
the person relevant to her position and suppresses the irrelevant information. Roles
are therefore stereotypical, describing an object from different viewpoints.

The defining characteristic of role is responsibility: Role is responsibility-driven.
Often a role needs to cooperate with other roles to perform some task. Thus a role can
be described by a list of responsibilities and collaborators. A CRC card therefore is a
perfect fit to describe a role. However, CRC cards are a design technique. A complete
design method is needed to take the advantage of CRC cards. This article surveys
several works on role modeling and design.

A complete role-based object design method, OOram, was developed by Reen-
skaug [31]. OOram supports the whole lifecycle of object development, from model-
ing, design to implementation. The role models described before are used for OOram
role modeling. The OOram role modeling approach consists of a comprehensive nota-
tion for representing roles and role interactions. The notation contains many symbols
for roles. For example, Fig. 2 shows two role symbols: Controller and View use the
same symbol because they represent the tools where Model uses a different symbol
because it is a database. OOram differentiates six kinds of role interaction such as
unspecified interaction, synchronous interaction, asynchronous interaction and
method return. OOram also offers model synthesis operations for constructing com-
plex role models from simple ones.

Andersen [1] and Kristensen [20] have also proposed role modeling approaches
and notations. Kristensen’s role modeling approach separates the static and dynamic
aspects of roles. Statically, roles are organized in a similar way as classes, using clas-
sification, specialization and aggregation. The dynamic relationships between the
roles are represented as sequencing, overlapping and iteration. Finally, objects par-
ticipated in a collaboration are grouped as a subject, which has the same intent as a
role model. Kristensen and Østerbye [21] have also provided a theoretical definition
of role and a discussion on the practical issues of role implementation.

Shams-Aliee and Warboys [36] have used roles as an abstraction above the object
level to support process modeling. They define a process as a group of cooperative
roles, a similar idea proposed by Cain and Coplien [5]. A process is represented in
two parts. In the first part, each role of a process is represented using a formalized
CRC card, which is a CRC card with added path expressions. A path expression
represents one of the four operations – sequence, selection, concurrency and iteration
– and is used to constrain the ordering of the responsibilities of a role. A formalized
CRC card may contain one or more path expressions. In the second part, a process is
represented as a group of collaborative roles in a Petri Net. A Petri Net shows the

 Designing Application Domain Models with Roles 5

interactions and ordering of roles in a process, which is equivalent to a process’ role
model. This work demonstrates that roles can be used as an abstraction above objects
to support other concepts, such as processes.

In other works, roles have been used as an abstraction for framework design [33],
multiagent systems development [15, 16, 18], component composition [43] and collabo-
rative commerce systems development [30]. Proposals have also been made to extend
object-oriented languages with role constructs [12, 28, 29]. For example, in [12], the
Smalltalk language is extended with a role construct and a role hierarchy construct. The
role construct, similar to the class construct, defines role types; the role hierarchy con-
struct, similar to inheritance, defines role type hierarchies. In [29], the C++ program-
ming language has been extended with set operations to perform role specific functions.

In addition to roles, other concepts have been developed to support object design,
e.g. Subject-Oriented Programming (SOP) [13] and Aspect-Oriented Programming
(AOP) [19]. SOP adds a new level above the pure class level, called subjects to repre-
sent class groupings. A class can be grouped into more than one subject. Hence sub-
jects are higher order classes that support multiple classifications of objects. AOP
uses the notion of aspects to represent common behaviors of objects. In an object-
oriented system (and owing to encapsulation), a class tends to be cluttered with dif-
ferent behaviors. Some behaviors are not specific to a class of objects, but common to
objects in other classes. AOP separates out common (crosscutting) behavioral aspects
from classes at design time and then attach them back to objects at a later stage. Inter-
estingly, Kendall [17] has shown that aspects can be treated as special roles of objects
whereas Kristensen [20] has used subjects as role groupings or role composition. The
role concept has therefore provided a single, cohesive viewpoint from which other
concepts can be understood.

In spite of the aforementioned works on roles and possibly many more, the impor-
tance of roles has only received a minor attention in the mainstream object-oriented
modeling and design. For example, roles are not the first class modeling concept in
UML. One reason might have been the misconception of roles, because roles are
eventually implemented as classes of objects. This article suggests that the implemen-
tation of roles be separated from the design of roles. The mismatch between object-
oriented languages (mostly class-based) and object-oriented design (object-based)
means that object design should be separated from object implementation. In object
design, the focus is on capturing the roles of objects, their responsibilities and col-
laborators, and on identifying and using patterns of object interactions. This is how
object design differs from procedural design, as expressed in [3].

Another reason for not accepting the role concept in object modeling may be due to
the unfamiliar and complicated notations offered by existing role modeling ap-
proaches. This article posits that role modeling should focus on the essence of roles,
rather than the notations. A successful approach to role modeling should take the
advantage of simple and familiar notations. The article proposes a simple role model-
ing approach based on CRC cards (renamed as RRC cards as Kendall [16]), role mod-
els and interaction diagrams. RRC cards are used to describe roles and interaction
diagrams to show the inter-role relations. One limitation of RRC cards is that
collaborations between roles are subsumed within the roles and as such the overall

6 L. Zhao

scope or context of role interactions is not clear at first sight [3]. To remedy this limi-
tation, the proposed approach uses role models to represent the context of roles and
collaborations. Role-responsibility matrices are provided as an alternative representa-
tion to interaction diagrams.

The proposed approach is similar to the process modeling approach of Shams-
Aliee and Warboys [36] in that it also uses CRC cards for role description, but differs
in two ways. First, it adopts the original CRC cards notation because the ordering of
the responsibilities can be represented in interaction diagrams. Second, it uses interac-
tion diagrams instead of Petri Nets as the former is simpler and more familiar to the
object community. For simplicity our approach does not consider role specialization
[20, 37].

3 Roles as a New Modeling Paradigm for Model Driven
Architecture

3.1 Model Driven Architecture

OMG’s Model Driven Architecture is a new architecture that uses models for soft-
ware development [25]. MDA consists of three general types of models, structured
into three basic layers, as shown in Fig. 3. These model types are briefly described as
follows.

• Computation independent model (CIM). A CIM is a domain or business model
which represents domain specific information, independent of implementation
technologies. In Fig. 3, domain models, such as Transportation, HealthCare and
E-Commerce, are structured in the outmost layer of MDA. Although not speci-
fied in [25], domain models are vertical partitions of application spaces.

• Platform independent model (PIM). A PIM is a virtual machine independent of
underlying platform technologies. A PIM provides a system’s services and func-
tions, such as transactions, events and security. In Fig. 3, PIMs are structured in
the middle layer. Although not specified in [25], platform independent models
are horizontal partitions of application spaces. In other words, a PIM provides a
set of generic services and functions across the application domains. For exam-
ple, transaction services are applicable to many domains, such as Finance, E-
Commerce and Telecom. In contrast, a CIM is specific to a particular business
domain. For example, a public transport model is only applicable to the transpor-
tation domain, though it may be contained within a more general domain, such
as a Geographic Information System (GIS).

• Platform specific model (PSM). A PSM combines the specification of a PIM
with the platform specific specification. A platform specific specification is sup-
ported by a particular platform model, such as a CORBA or Java component
model. In Fig. 3, PSMs are structured in the inner most layer.

The reason for the above model organization is to separate business logic from un-
derlying platform technology, thereby enabling the business aspect of an application and
its technological aspect to evolve independently of each other [25]. The core technolo-
gies that support MDA model development are the Unified Modeling Language

 Designing Application Domain Models with Roles 7

Fig. 3. Model Drive Architecture (from www.omg.com) consists of models organized into three
layers. The outer layer is made of computation independent models (CIM); the middle layer is
platform independent models (PIM); the inner layer is platform specific models (PSM).

(UML), the MetaObject Facility (MOF), XML Metadata Interchange (XMI), and the
Common Warehouse Metamodel (CWM). UML is regarded as a standard modeling
language for expressing MDA models [25].

3.2 Importance of Roles to MDA Model Design

The role concept posses certain characteristics that are required for good object de-
sign. Some of the important role characteristics are presented below.

Role is responsibility-driven. By focusing on object roles, we can express object in-
teractions in terms of role collaborations; we can specify responsibilities for each role
and achieve higher cohesion and lower coupling in the design.

Role is a natural concept for separating the concerns. By partitioning the design
space into roles, responsibilities and collaborators, we can obtain a set of more or less
well-separated objects, with clearly defined boundaries and meaningful inter-object
relations. Each role focuses on the relevant aspect of an object and filters out the ir-
relevant information. When an academic takes on the role of traveler, the focus is on
the responsibilities and collaborations of the traveler. Similarly, by focusing on the
Author role, the non-author aspects are ignored. The role concept is therefore about
separation of concerns.

Role is dynamic and flexible. An object can play different roles, change roles and
take on or off roles. An academic can take on an additional role as a year tutor or
change a year tutor role to an examination officer role. Each of these roles can be
considered and designed independently of others. For example, the role of an aca-
demic as Traveler is independent of the role of Year Tutor. These two roles live in
two different contexts and interact with different other roles; the designs of these two
roles can be modified separately without affecting one another. Hence when an object
is viewed by its roles, we can obtain a dynamic and flexible design.

Role is reusable and adaptable. A role is an extrinsic property of an object and
may be played by different objects; likewise, an object may play several different
roles. An academic may play several roles; an accountant is a role played by more

8 L. Zhao

than one administrative member; a travel agent is a role for all the staff working in a
travel agent. Roles are therefore reusable abstractions for objects. Role collaborations
are reusable abstractions for inter-object relations.

The above role characteristics are highly relevant and important to MDA model
design. This article believes that the success of MDA rests on the flexibility and
adaptability of its models with respect to business and technological changes. The
article proposes that roles be the first-class modeling abstraction for MDA. Unfortu-
nately the current MDA Guide [25] still focuses on the class-based design and the role
concept remains to be a minor concept for naming the mappings between the classes
(p.24, [25]). In the following section, a real world example from [9] is used to demon-
strate the importance of roles to designing MDA domain models. Although the exam-
ple is specific to a business domain, it has a general effect on the design of other types
of MDA models.

3.3 Designing a Network Point Model with Roles

A public transport network is a network of bus or train services. Such a network is
made of points and links between points. A point in a network can represent a
whole town, a place within a town, an individual vehicle stop, or the bus bay station at
a stop – depending on the level of granularity of interest to an application (See Fig. 4).
Therefore, a point in a network is not simply the smallest entity in space. Rather, it is
a complex entity that may contain other smaller points and links between them and
that play many roles. A point is thus a complex real world entity, spatially limited in a
way that can be reasonably presented as a point at one level of abstraction within the
model, but not at all levels.

STATION

Fig. 4. A point in a public transport network (after [9])

Representing a network point is inevitably an important task in developing public
transport application systems, because the structure of the points determines the struc-
tures of other components that build on the points.

 Designing Application Domain Models with Roles 9

JunctionPoint

NetworkPoint

ParkingPoint

Garage

StopPoint

JourneyDefinitionPoint

RouteDefinitionPoint

ReservePoint

JunctionPoint

NetworkPoint

ParkingPoint

Garage

StopPoint

JourneyDefinitionPoint

RouteDefinitionPoint

ReservePoint

Fig. 5. A class hierarchy for point types in a public transport network. All points are by defini-
tion network points. There are already five levels of inheritance even with just seven point
types. This design is inflexible because inserting a new point type will affect the application
that uses it.

Route
Definition

Point

Junction
Point

Stop
Point

Network
Point

Point
Role

Journey
Definition

Point

Parking
Point

Garage
Reserve
Point

Stop
Bay

PointApplication

Route
Definition

Point

Junction
Point

Stop
Point

Network
Point

Point
Role

Journey
Definition

Point

Parking
Point

Garage
Reserve
Point

Stop
Bay

PointApplication

Fig. 6. Redesigning points in Fig. 5 into roles in a public transport network. A point can be
attached to a specific role depending on its use in the application. This design is flexible be-
cause inserting a new point will not affect the point and the application that uses the point.

The early design of the point model was class-based; points are represented as
classes and organized into a hierarchy of point types using inheritance (Fig. 5). All
points are by definition network points and many of them overlap or intersect. Even
with just seven point types there are already five levels of hierarchy. For simplicity,
Fig. 5 does not show the overlapping point types. Clearly, such a representation is
inflexible because inserting a new type of point in the network affects the entire net-
work structure. Maintaining evolving points becomes a difficult task.

It was the complexity of this design problem that made the authors [9] turn away
from the class concept and the class modeling paradigm. In search for a new modeling
paradigm and a new concept, they decided to use the concept of role.

10 L. Zhao

With role modeling, a physical point is detached from its roles in the network.
When a point is used in an application, it will be attached to a role specific to that
application. Fig. 6 shows this new point model, where a point role may be general,
such as being a network point, or specific, such as being a junction point. A particular
application system will then decide which of the point roles is to be used. Fig. 6 also
conveys the following meaning: a point can take any of the roles, but not necessarily
all of them; a point may take an alternative role, e.g., a point may be a parking point,
which is either a garage or a reserve point. The parking point role is a general role that
can be specialized into either a garage or a reserve point. In contrast to the class-based
model (Fig. 5), the new point model is flexible because inserting a new point role in a
network will not affect the entire network structure. Maintaining evolving points
becomes easier. A detailed description and analysis of the point model can be found
in [9, 42].

4 A Simple Role Modeling Approach

The proposed role modeling approach is illustrated using an academic travel service
(ATS) example; the approach consists of the following steps.

1. Capturing the role collaboration context using a role model.
2. Describing roles, responsibilities and collaborators using RRC cards.
3. Representing the ordering of responsibilities and collaborations using Interac-

tion Diagrams.

4.1 Capturing the Role Collaboration Context

The role collaboration context is determined by a specific task and the roles involved.
For the ATS example, the task is about flight booking for academic travel. Typically,
the task involves the following procedures:

1. An academic seeks the permission from his/her Head of the Department.
2. If the permission is granted, the Head of the Department notifies the academic

and the Departmental Accountant; otherwise the travel aborted.
3. The academic then makes the flight booking through a Travel Agent.
4. The Travel Agent makes the booking and sends the invoice to the Departmen-

tal Accountant.
5. The Departmental Accountant makes the payment to the Travel Agent.
6. The Travel Agent issues the tickets and sends them to the academic.
7. The academic receives the tickets and is ready for travel.

There are four roles involved in the above task, which are:

R1: Traveler is the role of the academic who makes the request for travel.
R2: Authorizer is the role of the Head of the Department.
R3: Accountant is the role of an administrative member in the Department.
R4: Travel Agent is the role of a staff member in a Travel Agent.

 Designing Application Domain Models with Roles 11

Traveler
Travel
Agent

Accountant

Authorizer

1

2

3
2

4

7

5

6

TravelerTraveler
Travel
Agent
Travel
Agent

AccountantAccountant

AuthorizerAuthorizer

1

2

3
2

4

7

5

6

Fig. 7. A role model represents the collaboration context for the academic flight booking task.
Arrows represent interactions between roles; an interaction starts from one role and ends in
another; numbers show the sequence of interactions.

Traveler initiates and coordinates the whole task. We use a role model (Fig. 7) to
capture the above four roles and their interactions. The role model defines the context
of role collaboration in performing the flight booking task. In Fig. 7, an interaction is
represented by an arrow, originated from one role and terminated in another. Interac-
tions are numbered to show their ordering. One should note that the role model in
Fig. 7 might well be replaced by a state diagram, to show the starting, ending and
sequence of role collaboration.

4.2 Describing Roles, Responsibilities and Collaborators

Each role identified in a role model is described in full using a RRC card to include its
responsibilities and collaborators. The role model guides the description of roles.
First, according to the role model, the collaborators of a role are identified. Collabora-
tion may not be symmetric. For example, the collaboration between Traveler and
Authorizer is two-ways whereas the collaboration between Traveler and Accountant
is one-way. When two roles are in a two-way collaboration, they are mutual collabo-
rators; when two roles are in an one- way collaboration, the collaborator is the role to
which another role points. Hence, Traveler has Authorizer, Accountant and Travel
Agent as his/her collaborators whereas Accountant has Traveler and Travel Agent as
his/her collaborators.

Having identified all the collaborators for each role, we can then assign the respon-
sibilities to the roles. A responsibility is an action taken by a role. A responsibility
may or may not result in collaborating with another role. For example, Traveler takes
the travel request responsibility which will result in collaborating with Authorizer,
whereas Accountant has the responsibilities of updating the account details which
need no collaborators. Assigning responsibilities is an iterative process which can be
directed by “what-if” scenarios as suggested by Beck and Cunningham [3]. Fig. 8
shows the four RRC cards for the role model in Fig. 7.

4.3 Representing the Order of Responsibilities and Collaborations

This final step maps a set of related RRC cards onto an interaction diagram to show
the ordering of responsibilities and collaboration. Fig. 9 shows the ordering of respon-
sibilities and collaborations of RRC cards in Fig. 8. Arrows in the interaction diagram

12 L. Zhao

Traveller

Request travel.
Get payment details.
Initiate booking.

Authorizer
Accountant
Travel Agent

Authorizer

Approve travel.
Notify traveller

and accountant.

Traveller
Accountant

Accountant

Maintain travel budget.
Keep traveller records.
Make payment.

Travel Agent

Travel Agent

Make booking.
Send tickets.
Send invoice.

Traveller
Accountant

Traveller

Request travel.
Get payment details.
Initiate booking.

Authorizer
Accountant
Travel Agent

Traveller

Request travel.
Get payment details.
Initiate booking.

Authorizer
Accountant
Travel Agent

Authorizer

Approve travel.
Notify traveller

and accountant.

Traveller
Accountant

Authorizer

Approve travel.
Notify traveller

and accountant.

Traveller
Accountant

Accountant

Maintain travel budget.
Keep traveller records.
Make payment.

Travel Agent

Accountant

Maintain travel budget.
Keep traveller records.
Make payment.

Travel Agent

Travel Agent

Make booking.
Send tickets.
Send invoice.

Traveller
Accountant

Travel Agent

Make booking.
Send tickets.
Send invoice.

Traveller
Accountant

Fig. 8. RRC cards describing four roles in the academic flight booking task

Traveller Authorizer Accountant Travel Agent

Request travel

Notify traveller
Notify
accountant

Get payment details

Initiate booking

Send tickets

Send invoice

Make payment

Maintain travel
budget

Keep traveller
records

Traveller Authorizer Accountant Travel Agent

Request travel

Notify traveller
Notify
accountant

Get payment details

Initiate booking

Send tickets

Send invoice

Make payment

Maintain travel
budget

Keep traveller
records

Fig. 9. An interaction diagram showing the ordering of responsibilities and collaborations,
where solid bars representing the period in which roles are active and dotted lines representing
the period when roles are inactive

have the same meaning as those in the role model. An interaction diagram provides a
holistic view of the roles in a particular role model. It shows both internal and exter-
nal views of a role. The internal view of a role is characterized by its responsibilities
and the external view is characterized by its collaborations with other roles.

 Designing Application Domain Models with Roles 13

Traveller Authorizer Accountant Travel Agent

Request travel

Notify traveller

Notify accountant

Get payment
details

Initiate booking

Send tickets

Send invoice

Make payment

Maintain travel
budget

Keep traveller
records

Traveller Authorizer Accountant Travel Agent

Request travel

Notify traveller

Notify accountant

Get payment
details

Initiate booking

Send tickets

Send invoice

Make payment

Maintain travel
budget

Keep traveller
records

Fig. 10. A role-responsibility matrix showing roles fulfilling responsibilities through collaboration

As an alternative to interaction diagrams, we have developed role-responsibility
matrices (RRM). A RRM is basically isomorphic to an interactive diagram; one tiny
difference between the two diagrams (see Fig. 9 and Fig. 10) is that a RRM lines up
the responsibilities explicitly and aligns them with roles in a pair-wise fashion. Such a
tiny difference is intended to highlight the importance of responsibilities in collabora-
tion and make them an important dimension in addition to roles. With this intention,
the story of a RRM is that collaboration takes place when the role carries out a re-
sponsibility. In contrast, an interactive diagram places responsibilities in the back-
ground of roles.

5 Conclusion

This article attempts to make a claim that the class concept is static, inflexible and not
suitable for object design; in contrast the role concept is dynamic, flexible and central
to object design. Two facts support this claim, as found in literature survey. First,
most efforts on object design have been made to remedy the problems of classes.
Second, CRC cards and many other concepts are all concerned with capturing object
interactions in terms of roles, responsibilities and collaborations.

With this claim, this article argues that roles are relevant and important to the de-
sign of models for MDA. The article supports this argument with a real world exam-
ple and demonstrates why the class concept and the class modeling paradigm are not
suitable for the domain modeling and why the role concept and the role modeling
paradigm can yield a flexible design.

14 L. Zhao

This article notes that the role concept has not yet gained a widespread acceptance
in the orthodox object modeling approaches, such as UML, owing to the lack of a
proper understanding. In order to provide a better appreciation of roles in object
design, this article has illustrated the idea of roles through a simple role modeling
approach.

In conclusion, this article posits that an object-oriented way of design is to focus on
object interactions and drive the design from roles, responsibilities and collaborations.
Modeling objects with roles not only yields a semantically rich model, but also a
simple, elegant design that is flexible and adaptable. The role modeling paradigm
holds much promise for MDA model design.

Acknowledgements

I wish to thank Ted Foster, Liz Kendall and Egil Andersen for many inspirational
discussions on roles and objects over the past years; to Ted and Liz for working with
me on roles. I am most grateful to Uwe Assmann for his encouragement and enthusi-
asm in this article. His valuable suggestions have helped to shape the article and bring
it to the context of MDA. I am grateful to my reviewers for their expert comments and
suggestions. This article owes warm thinks to all these people.

References

1. E. P. Andersen, Conceptual Modeling of Objects: A Role Modeling Approach, Ph.D The-
sis, University of Oslo, 1997.

2. D. Bäumer, D. Riehle, W. Siberski, and M. Wulf, "The Role Object Pattern," In Proceed-
ings of 4th Conference on Pattern Languages of Programs, 1997.

3. K. Beck and W. Cunningham, “A Laboratory for Teaching Object-Oriented Thinking,”
Proc the Conference on Object Oriented Programming: Systems, Languages, and Applica-
tions (OOPSLA’89), ACM Press, pp. 1-6, 1989.

4. B.J. Biddle and E. J. Thomas, Role Theory: Concepts and Research, New York, R. E.
Krieger Publishing Co., 1979.

5. B.G. Cain and J.O. Coplien, “A Role-Based Empirical Process Modelling Environment,”
Proc. ICSP2, Berlin, 1993, pp. 125-133.

6. P. Coad, “Object-Oriented Patterns,” Comm. ACM, vol. 35, no. 9, 1992, pp.152-159.
7. J.O. Coplien, “Teaching OO: Putting the Object Back to OOD,” available at:

www.artima.com/weblogs/index.jsp?blogger=cope last accessed 1 July 2004.
8. W. Cunningham, “A Diagram for Object-Oriented Programs,” Proc the Conference on Ob-

ject Oriented Programming: Systems, Languages, and Applications (OOPSLA’86), ACM
Press, 1986, pp. 361-367.

9. T. Foster and L. Zhao. “Cascade.” Journal of Object-Oriented Programming, vol. 11 no.9,
February, 1999, pp. 18-24.

10. M. Fowler, UML Distilled, Reading: Addison-Wesley, 1997.
11. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns, Reading, MA: Addi-

son-Wesley, 1995.
12. G. Gottlob, M. Schrefl, and B. Rock, “Extending Object-Oriented Systems with Roles,”

ACM Transactions on Information Systems, vol. 14, no. 3, 1996, pp.268-296.

 Designing Application Domain Models with Roles 15

13. W. Harrison and H. Osher, "Subject-Oriented Programming (a critique of pure objects),"
Proc the Conference on Object Oriented Programming: Systems, Languages, and Applica-
tions (OOPSLA’93), Washington, D. C. September 1993. pp. 411 - 428.

14. B. Henderson-Seller, A Book of Object-Oriented Knowledge. Prentice Hall, 1992.
15. A. Karageorgos, N. Mehandjiev, S. Thompson, “Designing Agent Organizations Using

Role Models,” Knowledge Engineering Review, Special issue on Co-ordination and
Knowledge Engineering, vol.17, no. 4, 2003.

16. E.A. Kendall, “Agent Roles and Role Models: New Abstractions for Multiagent System
Analysis and Design,” International Workshop on Intelligent Agents in Information and
Process Management, Germany, September 1998.

17. E.A. Kendall, “Role Model Designs and Implementations with Aspect-Oriented Program-
ming,” Proc the Conference on Object Oriented Programming: Systems, Languages, and
Applications (OOPSLA’99), ACM Press, 1999.

18. E.A. Kendall and L. Zhao: “Role Models and Patterns for Agent Collaboration”, Work-
shop on Behavioural Modelling, In OOPSLA '98 Addendum, October, 1998.

19. G. Kiczales, et al, “Aspect Oriented Programming,” Proc. European Conference on Ob-
ject-Oriented Programming (ECOOP’97), Springer Verlay, 1997, pp. 220-242.

20. B.B. Kristensen, “Object-Oriented Modeling with Roles,” Proc. Second Int’l Conf. Object-
Oriented Information Systems (OOIS’95), Springer, London, 1996, pp. 57-71.

21. B. B. Kristensen and K. Østerbye, “Roles: Conceptual Abstraction Theory & Practical
Language Issues,” Theory and Practice of Object System (TAPOS), vol. 2, no. 3, pp. 143-
160, 1996.

22. B. B. Kristensen and J. Olsson, “Roles & Patterns in Analysis, Design and Implementa-
tion,” Pro. 3rd International Conference on Object-Oriented Information Systems
(OOIS'96), London, England, 1996.

23. B. Liskov, “Data Abstraction and Hierarchy,” SIGPLAN Notices, vol. 23, no.5, 1988,
pp.17-34.

24. B. Liskov and S. Zilles, “Programming with Abstract Data Types,” SIGPLAN Notices,
vol. 9, no. 4, 1974, pp.50-59.

25. MDA Guide Version 1.0.1, Document Number: omg/2003-06-01, 12th June 2003. Avail-
able at www.omg.com.

26. B. Meyer, Object-Oriented Software Construction. 2nd Ed. NJ: Prentice Hall, 1997.
27. S. Meyers, Effective C++. 2nd Ed. Reading:Addison-Wesley, 1998.
28. L. T. Nguyen, L. Zhao and B. Appelbe, “A Set Approach to Role Modeling”, Proc. 37th

International Conference on Technology of Object-Oriented Languages and Systems
(TOOLS-Pacific 2000), Sydney, Australia, 20-23 November 2000.

29. L. T. Nguyen, D. Taniar, B. Appelbe and L. Zhao, “Role Model Design and Implementa-
tion Using a Set Approach,” ISCA Journal, vol. 11, no. 2, June 2004.

30. H. Park, W. Suh and H. Lee, “A Role-Driven Component-Oriented Methodology for De-
veloping Collaborative Commerce Systems,” Information and Software Technology, 2004.

31. T. Reenskaug, P. Wold, and O.A. Lehne, Working with Objects, The OOram Software En-
gineering Method, Greenwich: Manning Publications Co, 1996.

32. D. Riehle, “A Role-Based Design Pattern Catalog of Atomic and Composite Patterns
Structured by Pattern Purpose,” Ubilab Technical Report 97.1.1. Zurich, Swizerland, Un-
ion Bank of Swizerland, 1997.

33. D. Riehle and T. Gross, "Role Model Based Framework Design and Integration,"
OOPSLA'98, Proceedings of the 1998 Conference on Object Oriented Programming Sys-
tems, Languages and Applications, ACM Press, 1998.

16 L. Zhao

34. J. Rumbaugh, M. Blaha, W. Premerlani and F. Eddy, Object-Oriented Modeling and De-
sign, Prentice-Hall, 1991.

35. F. Shams-Aliee and B. Warboys, “Roles Represent Patterns,” Workshop on Pattern Lan-
guages of Object-Oriented Programs, ECOOP’95, 1995.

36. F. Shams-Aliee and B. Warboys, “Applying Object-Oriented Modelling to Support Proc-
ess Technology.” Proc. the 1st World Conference on Integrated Design & Process Tech-
nology, University of Texas, Austin, USA, December 1995.

37. M. Snoeck and G. Dedene, “Generalisation/Specialisation and Role in Object Oriented
Conceptual Modeling”, Data and Knowledge Engineering, vol. 19, no. 2, 1996.

38. R. Wirfs-Brock and R. Johnson, “A Survey of Current Research in Object-Oriented De-
sign,” Communication of ACM, vol. 33, No. 9, pp. 104-124, 1990.

39. R. Wirfs-Brock and A. McKean, Object Design: Roles, Responsibilities and Collabora-
tions. Addison-Wesley, 2003.

40. R. Wirfs-Brock and B. Wilkerson, “Object-Oriented Design: a Responsibility-Driven Ap-
proach,” Proc the Conference on Object Oriented Programming: Systems, Languages, and
Applications (OOPSLA’89), ACM Press, pp. 71-76, 1989.

41. L. Zhao and J.O. Coplien, “Symmetry in Class and Type Hierarchy,” in Conferences in
Research and Practice in Information Technology, 10. James Noble and John Potter, Eds.
Australian Computer Society, January 2002, pp. 181-190.

42. L. Zhao and T. Foster, “Modelling Roles with Cascade”, IEEE Software, vol. 16, no. 5,
1999, pp.86-93.

43. L. Zhao and E.A. Kendall, “Role Modelling for Component Design”, in Proc. 33rd Inter-
national Conference on Technology of Object-Oriented Languages and Systems (TOOLS
Europe 2000), IEEE Computer Society, 2000, pp. 312-323.

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 17 – 32, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Model Bus: Towards the Interoperability
of Modelling Tools

Xavier Blanc, Marie-Pierre Gervais, and Prawee Sriplakich

Laboratoire d'Informatique de Paris 6 (LIP6), University Paris VI,
8, rue du Capitaine Scott, 75015 Paris, France

{Xavier.Blanc, Marie-Pierre.Gervais,
Prawee.Sriplakich}@lip6.fr

Abstract. MDA software development requires the interoperability of a wide
range of modelling services (operations taking models as inputs and outputs),
such as model edition, model transformation, and code generation. In particular,
software development life cycle requires the interoperability of different
modelling services. In particular, this interoperability concerns how to
"connect" services (how to send an output model produced by one service as an
input to another service). Today, the notion of modelling services is not yet well
defined. Moreover, CASE tools, which implements different services, have
heterogeneous interfaces. For this reason, the service connection is costly and
cannot be automated. Currently, there are few works addressing this problem.
Therefore, we propose an architecture and a prototype enabling the services of
different tools to be connected.

1 Introduction

According to Model Driven Architecture (MDA), models are treated as first-class
elements in software development [21]. MDA application requires a wide range of
modelling services such as model edition [15], model storage [15], model
manipulation [22][14], code generation [9] and model transformation [4][7][8]. We
can mention also model execution and model validation as some work are now
ongoing at the OMG (execution semantics defined in UML 2.0 [25], Object
Constraint Language 2.0 [24]). For precision, we define the term modeling service as
an operation having models as inputs and outputs. Hence, the users of modeling
services are software developers that want to apply different modeling services to
their models in order to, for example, analyze, design and implement software.

Several CASE tools, implemented by different vendors (or developer groups), offer
various modelling services. For example, NetBeans Metadata Repository [18],
ModFact [17], Eclipse Modeling Framework (EMF) [10], and Univers@lis [3]
propose model storage and model manipulation. Rational Rose [30], Objecteering
[19], EclipseUML [11], Poseidon [29] and ArgoUML [2] propose UML model
edition and code generation. ArcStyler [1], MIA [16], and UMT-QVT [32] propose
model transformation. Although these tools cover a lot of modelling services, some
services, such as UML model execution [31], OCL constraint verification [13], deep
model copy [28], are not commonly supported by commercial tools.

18 X. Blanc, M.-P. Gervais, and P. Sriplakich

According to the MDA vision, software development life cycle requires the
interoperability of tools. In particular, the connection between the services of
different tools must be enabled. This problem concerns how to send an output model
produced by one service as an input to another service (which may be offered by a
different tool). For example, connecting a model storage service to a model
transformation service will enable the model transformation service to retrieve its
input or to store its output in the model storage service.

Connecting modelling services is a difficult problem. We identified two main
concerns regarding this problem: functional connection and concrete connection.
Functional connection ensures that the service inputs and outputs have compatible
types so that the services can exchange data. It particularly concerns the type
compatibility of models. Concrete connection ensures that modelling service
connections can be realized at run-time. In particular, the connected services must
agree in a model representation form and in a mechanism for exchanging models.

Today service connection cannot be done in an automated way. As a result, users
must spend a lot of technical efforts to realize the connection. Neither functional
connection nor concrete connection can be automated. The functional connection (i.e.
type compatibility checking) is not automated because today tools are only
documented informally in natural languages (in manuals), so the information about
input/output types may be insufficiently precise and can not be exploited.

Moreover, each tool has its own model representations for encoding its services'
inputs and outputs. A model representation can be either a textual form (e.g. XML
Metadata Interchange (XML) [27], Human-Usable Textual Notation (HUTN) [20]) or
an object form (e.g. Java Metadata Interface (JMI) [14], EMF Repository [10]). Also,
each tool provides different interfaces. Some tools provide graphical user interfaces
[30][19], some are executed via command lines [17] and others propose APIs for
calling services [10]. To connect services of different tools, a dedicated conversion is
required for each pair of tools. This effort is costly and can only be done manually.
For this reason, concrete connection is not automated.

Despite the needs for connecting modelling services, there are currently few works
concerning this problem. The Eclipse platform has been developed for connecting
tools. But Eclipse does not take into account the particularity of modelling domain.
Although the EMF offers the integration of modelling tools into Eclipse, it does not
address at all the functional connection problem and the way tool connections are
realized is limited to the use of the EMF's Java API.

We propose here the Model Bus architecture for addressing the functional connection
and the concrete connection problems. Model Bus is mainly based on middleware
technologies such as CORBA and Web Services but it adds new features for dealing
with modelling aspects. Model Bus enables the automation of modelling service
connections. We have implemented a prototype of Model Bus on the Eclipse platform
and we have connected several modelling services proposed by the ModFact tools.

This paper is organized as follows. Section 2 discusses the difficulties of modelling
service connection. Section 3 presents Model Bus architecture and explains how
Model Bus can automate modelling service connection. In section 4, we show how to
use Model Bus in an example scenario. Section 5 validates our concepts by presenting
our prototype. Section 6 compares our approach with others. The last section
concludes our work and presents research perspectives.

 Model Bus: Towards the Interoperability of Modelling Tools 19

2 Service Connection Problem

First of all, let us illustrate the notion of service connection through an example (c.f.
figure below). In this example, a user (software developer) wants to perform a UML
to Enterprise Java Bean (EJB) transformation. To do this, he does the following
scenario: First he will find a UML model in a UML Repository service. This service
requires a model name as an input and returns a UML model as an output. This output
is connected to the input of a Transformation service for transforming the UML
model to an EJB model. The output of the transformation service (i.e. EJB model)
will be connected to the input of a Code Generation service for generating an EJB
application (i.e. code).

Fig. 1. A service connection example: A software developer wants to use three modelling
services (UML Repository, Transformation, Code Generation) provided by three different tools
conjointly.

This kind of scenario seems to be common in MDA software development.
However, we will show you that there are significant difficulties in service connection.

2.1 Functional Connection: Checking Type Compatibility

To ensure that the service connection is possible, the type compatibility between an
output of a service and an input of another service must be checked. The previous
example requires the following checking: UML Repository's output and
Transformation's input, Transformation's output and Code Generation's input.

The type compatibility is a well-known problem; however it has not been addressed
in the modelling domain. Unlike classical data type, the model type compatibility is not
a trivial problem because nowadays there is no well-known, precise definition of
model types. Finding such a definition is also difficult because there are uncountable
kinds of models (e.g. UML models, SPEM models, CWM models …). We will
identify that model types have several characteristics. Then we will illustrate why these
characteristics are important to the model type compatibility problem.

Model type characteristics and example of type checking rules
Metaclasses: It is a common practice to use a metamodel to define model types -
input and output types of a service. In other words, the service's inputs or outputs can
be anything conforming to a metamodel. However, currently there is no precise
definition of metamodels: Is it a set of metaclasses (MOF classes) or a set of
metapackage (MOF packages)? We propose that model types should be defined in
terms of metaclasses rather than metapackages. This is because most services are

Transformation

UML modelPackage Name

UML Repository Code Generation

EJB Model

20 X. Blanc, M.-P. Gervais, and P. Sriplakich

Fig. 2. Roles of metaclasses in the model type definition: The gay rectangles represent the
metaclasses whose instances are inputs and outputs of a modelling service.

capable of processing instances of some metaclasses. A metapackage may contain
metaclasses whose instances are not acceptable by services. The figure below shows
how model types are defined. The grey rectangles in metapackage1 represent the
metaclasses whose instances can be processed by the service and the metaclass in
metapackage2 whose instances are produced by the service.

“Any” vs. specific model types: A model type is said to be specific if the
corresponding models can contain only instances of some specific metaclasses. On
the contrary, for the “any” model type, the corresponding models can contain
instances of any metaclasses. The "any" model type is necessary because there are
several services that operate on this type. For instance, the MOF QVT proposal [23]
defines generic transformation that can be applied to any kinds of models. The input
and output of this transformation is "any" model type.

Model granularity: A model can contain either a single instance of a metaclass (e.g.
a UML package, a UML class) or a collection of instances (UML packages, UML
classes). Therefore, the model type definition must specify the allowed number of
instances, for example, "a single instance", "no more than two instances", or "any
number of instances". Moreover, for collection-granularity model types, the order of
instances in the collection may have meanings. Therefore, the type definition should
specify whether the instances are required to be ordered.

The characteristics presented above are required for checking the type
compatibility. We present some checking rules that use those characteristics. Then we
will show that those rules cannot be verified in the UML-to-EJB example.

Metaclasses: An output model type (T1) is compatible to an input model type (T2) if
all the T1's metaclasses are included in the set of T2's metaclasses.
As regards the example, UML Repository does not specify the return type. It may
return either a UML package (instance of metaclass Package) or classes contained in
the package (instances of metaclass Class), or other things (UseCase, Sequence
Diagramme etc). Consequently, we cannot check whether its return type is compatible
to Transformation's input.

“Any” vs. specific model types: All specific model outputs are compatible to an
"any" model input. On the other hand, an "any" model output does not always
compatible to a specific model input depending on the actual type (at runtime) of that
"any" model output. Therefore, the metaclass checking is necessary at runtime.

As regards the example, it is not specified whether Transformation service is
generic or specific to particular kinds of models. As consequent, we cannot know
whether the type checking must be performed statically or at runtime.

 metapackage1 metapackage2 service1

outputinput

 Model Bus: Towards the Interoperability of Modelling Tools 21

Model granularity: The instance number range of the output model type must be
included in the range of input model type. For example, "only single instance" is
included in "from zero to two instances".

As regards the example, Transformation service does not specify how many
instances (of metaclasses) the result model will contain. If the result model contained
multiple instances while Code Generation service can handle only one instance, the
service connection would cause errors.

We conclude that the type compatibility verification requires precise service
description, especially the input/output types of services. Moreover, if this description
were specified in a well-defined format, the automation of the checking rules would
be feasible. However, this is not the case in current practice because such description
is usually written in natural languages (i.e. in tool manuals). For this reason, the
functional connection is an unsolved problem.

2.2 Concrete Connection: Executing Connected Services

As previously explained, to execute connected services, the services must agree in a
model representation form and in a mechanism for exchanging models. However,
tools providing services are heterogeneous. Therefore, two tools can hardly exchange
models. We identify two kinds of tool heterogeneity: model representation forms and
interface styles (i.e. the way services receive inputs and return outputs).

Model representation forms: Tools have their own model representation forms. On
one hand, some tools use models represented in textual formats. For example,
Poseidon and ArgoUML store models in the XMI format. On the other hand, some
other tools require models in object forms. For example, model edition services in
EclipseUML operate on model objects in the EMF repository.

Interface styles: The way services receive inputs and return outputs vary from a tool
to another. For example, Rational Rose offers to users a graphical user interface (GUI)
for applying code generation services on a UML model. ModFact provides a command
line interface for applying a DTD generation on a MOF model. EMF provides an API
for using the model manipulation service on an EMF repository. Moreover, tools that
support multi-users can provide remote access. For instance, ModFact repository
allows the model manipulation service to be accessible through the CORBA RPC. We
can also anticipate tools offering Web Service access to their services.

Both kinds of heterogeneity cause difficulties in concrete connection. If services
use different model representation forms, an output of a service can not be understood
by one another. Furthermore, some interface styles, such as command lines or GUIs,
do not support automatic interaction. To connect the services offering such interfaces,
users must manually transfer a model from one service to another. In this case,
automating service connection is not possible.

Although this heterogeneity problem is a well-known problem and several
solutions have already been proposed (e.g. CORBA, Web Service), none those
solutions addresses the particularity of modelling domain. They do not define model
representation forms and interface styles that are appropriate to modelling services.

22 X. Blanc, M.-P. Gervais, and P. Sriplakich

3 Model Bus

3.1 Describing Functional Connection

Our design principle is to provide well-formed service description. In particular,
service inputs and outputs must be precisely defined in order that the service
connection can be checked. The next figure contrasts the current practice and our
solution. In the current practice, as we have mentioned that today there is no well-
known, precise definition of model types, the view of modelling services is unclear.
Our approach proposes a uniform view where services are similar to software
components having precise input and output definitions.

We propose a metamodel, called Functional Description (c.f. the next figure). This
metamodel describes the signatures of modelling services in an abstract way. Modelling
services are similar to classical operations that have input and output parameters.
However they have a new important feature: their input and output types can be models.

Fig. 3. Modelling services viewed as software components: Our goal is to provide a precise
definition of modelling services. This definition must enable users to identify compatible
services that can be connected.

DirectionKind
in
out

<<enumeration>>MultiplicityType
upper : Integer
lower : Integer
is_ordered : Boolean
is_unique : Boolean

PrimitiveType EnumerationType
labels : String

Type
name : String

Parameter
direction : DirectionKind
multiplicity : MultiplicityType
name : String 1* 1*

Error
name : String

Service
name : String

1..*1..*

*
+errors

*

raisesErrors

AnyModelType

ModelType

Class
(from Model)

SpecificModelType

1..*

+mofClasses

1..*

Fig. 4. Functional Description metamodel: We can describe each modelling service by creating
an instance of this metamodel.

The Functional Description metamodel addresses the problem of the type
compatibility verification by allowing services to be sufficiently described. The model
characteristics presented in 2.1 can be precisely specified as follows.

Using Model Bus Current practice

 Model Bus: Towards the Interoperability of Modelling Tools 23

Metaclasses: The metaclass SpecificModelType references MOF metaclasses whose
instances can be contained in input and output parameters. For example, in the
description of a service requiring a UML use case, the SpecificModelType will point
to the metaclass UseCase in the UML metamodel. This approach is unambiguous
since SpecificModelType allows users to obtain, for example, the complete definition
of UML use cases (in a particular version of the UML metamodel).

"Any" vs. specific model types: The “any” and specific model types can be
distinguished using metaclasses SpecificModelType and AnyModelType.
SpecificModelType points to the metaclasses whose instances are expected while
AnyModelType indicates that the parameter can contain instances of any metaclasses
of any metamodels.

Model granularity: MultiplicityType allows model granularity to be specified using
the upper and lower attributes. For example, [2..2] (i.e. lower=2, upper=2) and [1..*]
(i.e. lower=1, upper= -1) denote that the model must contain respectively “exactly
two” and “one or more” instances. Moreover, the isOrdered attribute specifies
whether the order of instances (in a multi-instance model) must be respected.

The Functional Description is similar to the operation definition in MOF 1.4 [22].
However, it introduces two new features. Firstly, in MOF operations, a parameter
type is limited to be a single metaclass. Therefore we cannot define, for example, a
model including both UML classes and UML packages. In the Functional
Description, SpecificModelType can define more flexible types because it can
reference more than one metaclass. Secondly, in MOF operations, the "any" model
type parameter doesn’t exist. Thus, the Functional Description can describe a wider
range of services.

Our approach supports type checking automation. A service description repository
can be built from our metamodel, based on technologies such as Java Metadata
Interface (JMI) [14] or Eclipse Modelling Framework (EMF) [10]. This repository
offers an API for manipulating service descriptions. This API allow us to write type
compatibility checking rules in Java.

3.2 Describing Concrete Connection

In section 2.2, we have already explained that the tools heterogeneity causes difficulty
for users. However, it is not practical in the real world to limit all tools to only one
model representation form and one interface style. Moreover, each model representation
form and interface style has its own advantages. For instance, object forms (e.g. JMI,
EMF) provide model manipulation facilities while XMI format is better for model
exchange. As for interface styles, it is simple and convenient to call local tools' services
via an API while remote access mechanisms such as CORBA or Web Service are
suitable for multi-user tools. This trade-off leads us to the following design principles:

EntryPoints: We provide a set of EntryPoints – concrete methods to call modelling
services - allowing tool implementers to choose an EntryPoint suitable for their tools.
EntryPoint definition will include model representation definition and interface style
definition.

24 X. Blanc, M.-P. Gervais, and P. Sriplakich

Fig. 5. How Model Bus enables concrete connection: Our goal is to generate code allowing
services to be invoked. Thanks to this automated generation, the user does not need to be aware
of tool heterogeneity.

Generation rules: For each EntryPoint, we also provide rules for generating 1)
skeleton codes allowing services to be invoked and 2) service invocation codes for
connecting an output of a service to an input of another service. Thanks to this
automated generation, users who want to connect services do not need to be ware of
service implementation.

The figure below illustrates how Model Bus solves the concrete connection
problem. Without Model Bus, when a new tool is added, users will need to develop a
dedicated method for connecting it with each existing tool. By using Model Bus, a
new tool can automatically connect to others through the EntryPoints: the codes for
connecting services will be generated using our generation rules.

EntryPoints: We propose a metamodel (c.f. next figure), for describing EntryPoints.
The EntryPoint metaclass associates the concrete aspect with the abstract aspect of
services. In other words, it specifies how the services defined abstractly in the
Functional Description can be concretely invoked.

EntryPoint is specialized for representing each EntryPoint. We identify here three
EntryPoints: WsEntryPoint, CorbaEntryPoint, JmiEntryPoint. Each EntryPoint is
briefly defined in the table below according to model representation forms and
interface styles.

Table 1. EntryPoint summary

EntryPoint Model Representation Form Interface style
WsEntryPoint XMI WSDL

(Using SOAP message
for invocation)

CorbaEntryPoint CORBA objects (based on MOF-IDL) CORBA
(Using IIOP protocol for
invocation)

JmiEntryPoint Java objects (based on JMI) Local Java API
(Using Java method
invocation)

Using Model Bus: Automated service connection
Current practice:
Manual service connection

New tool

New tool

 Model Bus: Towards the Interoperability of Modelling Tools 25

JmiEntryPoint

implClass : string
(from Jmi)

WsEntryPoint
(from Ws)

CorbaEntryPoint
(from Corba)

Service

name : String
(from Function Description)EntryPoint

* 1..** 1..*

Tool
name : String

1..*1..*

Fig. 6. EntryPoint metamodel: This metamodel describes how modelling services can be
concretely invoked

All EntryPoints follows the similar principles: specifying the representation of
service parameters (which are models) and specifying the service invocation
mechanism via a specific interface style. In the rest of the article, we focus on the
JmiEntryPoint. Our work concerning the WsEntryPoint is presented in [6].

Generation rules: For automating service access, we provide the generation rules
which are used by both tool providers and users. First, they enable tool providers to
generate skeleton codes allowing the services to be invoked. These skeleton codes
will be used either for implementing the services or for delegating to existing
implementation. Then, users can generate codes for invoking the services.
For JmiEntryPoint, a service description will be mapped to a Java interface. This
interface will serve for both tool providers and users: It allows tool providers to
provide the service implementation conforming to JmiEntryPoint. For users, it will be
used in the generated codes that connect services (as we will later demonstrate in 4.2).

The rules for generating this Java interface are defined in terms of the
correspondences between service description metaclasses and Java constructs as
briefly shown the following table.

Table 2. Correspondences between service description elements and Java constructs

Service description elements Java constructs
JmiEntryPoint A singleton Java Interface <JmiEntryPoint.implClass>
Service A Java method :

Java.util.Map <Service.name>(java.util.Map inputMap)
Input A map entry (<Parameter.name>, value) in inputMap Parameter
Output A map entry (<Parameter.name>, value) in returned Map
lower>=1 Corresponding map entry is required
lower=0 Corresponding map entry is optional

Multiplicity
Type

upper>1 or upper=* Value must be instance of java.util.Collection
PrimitiveType Basic Java types (e.g. java.lang.String, java.lang.Boolean)
EnumerationType javax.jmi.reflect.RefEnum

Type

ModelType javax.jmi.reflect.RefObject

26 X. Blanc, M.-P. Gervais, and P. Sriplakich

A JmiEntryPoint is mapped to a Java interface. Each service referred by the
JmiEntryPoint will be mapped to a Java method “java.util.Map <Service.name>
(java.util.Map inputMap)”. inputMap allows the service’s input parameters to be
passed as name-value pairs in the map data structure (java.util.Map). Likewise, the
returned map will contain the name-value pairs of all output parameters.

The rest of the metaclasses (Parameter, Multiplicity, Type) serve as constraints on
parameter values: PrimitiveType is mapped directly to Basic Java types (e.g. java.
lang.String, java.lang.Boolean). For ModelType, the parameter values must be
objects representing metaclass instances in JMI repositories (i.e. java.jmi.reflect.
RefObject). For the optional parameter (i.e. MultiplicityType.lower>0), the map entry
representing the parameter’s value can be absent. For the parameter containing
multiple objects (i.e. MultiplicityType.upper>1), the class java.util.Collection is used
for holding the objects.

4 Model Bus Example

We take the same example UML-to-EJB for illustrating how Model Bus can solve the
service connection difficulties.

4.1 Solving Functional Connection

For solving functional connection problem, we define each tool (UmlRepository,
UmlToEjb, CodeGeneration) using the Functional Description metamodel. The result
is shown in the following table.

The first tool, UmlRepository, offers two services: findClass and findPackage. The
former returns a UML class from a given name while the latter returns a UML
package. The second tool, UmlToEjb, offers the transform service that transforms
UML packages (instances of metaclass Model_Management::Package in the UML

Table 3. Example of Functional Descriptions

Tool Service Parameter Direction
/Multipicity

Type

className In [1..1] PrimitiveType (String) findClass
class Out [1..1] SpecificModelType

(Foundation::Core::Class)
packageName In [1..1] PrimitiveType (String)

Uml
Repository

findPackage
package Out [1..1] SpecificModelType

(Model_Management::Package)
sourceModel In [1..*] SpecificModelType

(Model_Management::Package)
UmlToEjb transform

targetModel Out [1..*] SpecificModelType
(ejb::EjbComponent)

generateSingle
Component

ebjComponent In [1..1] SpecificModelType
(ejb::EjbComponent)

Code
Generation

generate
Components

ebjComponents In [1..*] SpecificModelType
(ejb::EjbComponent)

 Model Bus: Towards the Interoperability of Modelling Tools 27

metamodel) into instances of EbjComponent (defined in the EJB metamodel). The last
tool, CodeGeneration, offers two services: generateSingleComponent and
generateComponents. The former requires a single EbjComponent instance while the
latter requires a collection of EbjComponent instances.

For connecting the services, users must choose one service for each tool. Since the
UmlRepository tool and CodeGeneration tool propose more than one service,
appropriate choices must be made. The next figure shows the choices that the user
makes (i.e. findPackage, transform, generateComponents).

To verify that the choices are correct, the user can use the following rules to check
automatically the type compatibility of the inputs and outputs of the connected
services.

Fig. 7. Example of modelling service connections: When the modelling services are precisely
described, we can identify whether the inputs and outputs of them are compatible and can be
connected.

The findPackage & transform services: The output parameter package is connected
to the input parameter sourceModel. The model types of both parameters correspond
to the same metaclass (Model_Management ::Package) and hence are compatible.
Their granularities are also compatible ([1..1] [1..*]). Therefore, the service
connection is correct.

The transform & generateComponents services: The output parameter targetModel
is connected to the input parameter ebjComponents. The model types of both
parameters correspond to the same metaclass (ejb::EbjComponent). Their
granularities are also compatible ([1..*] [1..*]). Therefore, the service connection is
correct.

If the user made bad choices, the similar analysis as above could detect bad service
connections. For example, the connection of the findClass service to the transform
service would be incorrect because the model types of their parameters are
incompatible (metaclass Foundation::Core::Class vs metaclass Model_Management
::Package). The connection of the transform service to the generateSingleComponent
service would also be incorrect because the granularities of their parameters are
incompatible ([1..*] [1..1]).

4.2 Solving Concrete Connection

As described, EntryPoint is used for specifying how to invoke services. We will
illustrate how to connect services via JmiEntryPoint. By using the generation rules,
Java interfaces can be generated from the service descriptions as shown below:

packageName package sourceModel targetModel ebjComponents

generateComponents
(in CodeGeneration)

findPackage
(in UmlRepository) transform

(in UmlToEjb)

28 X. Blanc, M.-P. Gervais, and P. Sriplakich

public interface UmlRepository {
 public Map findPackage(Map inputMap);
 public Map findClass(Map inputMap); }
public interface UmlToEjb {
 public Map transform(Map inputMap); }
public interface CodeGeneration {
 public Map generateSingleComponent(Map inputMap);
 public Map generateComponents(Map inputMap); }

To execute all the service connections, only a simple code is needed for connecting

them. For brevity, only the connection of transform service and generateComponents
service is shown below. The two services are connected by linking the targetModel
output to the ebjComponents input. To connect them, first the service producing the
output (i.e. transform) is invoked (line a). Then, the output is extracted from the map
data structure (line b). Next the output is linked to the input by putting it in the map
(line d). Finally, the service consuming the input (i.e. generateComponents) is
invoked (line e).

a. Map transformOutput = UmlToEjb.transform(transformInput);
b. Collection targetModel = (Collection)

transformOutput.get(“targetModel”);
c. Map generateComponentsInput = new Hashtable();
d. generateComponentsInput.put(“ebjComponents”, targetModel);
e. Map generateComponentsOutput =

CodeGeneration.generateComponents(CodeGenerationInput);

The codes for linking other parameter pairs follow the same pattern. For this
reason, by specifying a parameter pair to be linked, we can automatically generate the
code.

5 Proof of Concepts: Model Bus Integrated Environment (MBIE)

We have implemented a Model Bus prototype on the Eclipse platform. This prototype
is called Model Bus Integrated Environment (MBIE). MBIE provides two facilities.
Firstly, it allows users to browse all service descriptions. In particular, users can
examine the signature of each modelling service. Secondly, MBIE automatically
generates a GUI from service descriptions. Users can then use this GUI for invoking
any service. This implementation proves that 1) service descriptions can be
automatically processed and 2) The invocation of any service can be automated in the
sense that users need not writing codes.
The following figure illustrates the MBIE architecture. MBIE is connected to the bus
like other tools. Instead of accessing the bus directly, users can alternatively use the
GUI facilities provided by MBIE to interact with tools. MBIE contains two
components: Functional Management and EntryPoint Management. The Functional
Management allows users to browse service descriptions. The EntryPoint Management
allows users to invoke the chosen service via an automatically generated GUI.

Functional Management provides a GUI, called Functional View (c.f. the next
figure), which lets users explore tools’ Functional Descriptions (i.e. modelling service
signatures) and then select a service to be invoked.

 Model Bus: Towards the Interoperability of Modelling Tools 29

Fig. 8. MBIE Architecture: MBIE is an environment that allows users to use modelling services
of any tools. It has two parts. Functional Management allows users to examine available
services and to determine functional connection. EntryPoint Management allows users to
invoke services transparently form service implementation.

Fig. 9. GUI of MBIE: Functional Management (left) and EntryPoint Management (right)

As shown in the figure 9, three tools are available: BimLookup, which provides
lookup services for service descriptions, ModelSharing, which offers a model storage
service, and ModelTransformation, which proposes a transformation service based on
Transformation Rule Language [8]. This Functional View also shows that the
ModelTransformation tool offers the transform service having four parameters (rules,
sourceModel, targetMetamodel and targetModel).

EntryPoint Management allows users to invoke a modelling service through the
Service Call Dialog, which is automatically generated from the signature of the
service. Firstly, this GUI takes inputs from users. Then the service is invoked using
the appropriate EntryPoint. Finally, the results are returned to users.

Figure 9 shows a Service Call Dialog for invoking the transform service. This
dialog allows users to supply three inputs parameters (rules, sourceModel, and
targetMetamodel) and to receive the result (targetModel).

BimLookup
(tool lookup service)

ModelTransformation

Functional
Management

ModelSharing

EntryPoint
Management

invokes
services

tools

Model Bus Integrated Environment

EntryPoints

examines service
description

30 X. Blanc, M.-P. Gervais, and P. Sriplakich

6 Related Works

The works related to Model Bus concern frameworks where tools can be integrated.
Our previous work, Integrated Transformation Environment (ITE) [5], allows users to
use many transformation engines in the same environment. Compared to Model Bus,
the ITE approach is more restrictive. Firstly, ITE limits integrated tools to be model
transformation tools having one input model and one output model. Model Bus can
describe more flexible functionalities (i.e. any number of inputs and outputs).
Secondly, ITE uses metamodels for defining model types. Model Bus proposes a
more precise definition of model types using metaclasses.

The providers of some repository implementations such as Netbeans Metadata
Repository [18], Eclipse Modeling Framework [10], and Univers@lis [3] propose
frameworks where all tools share the same central repository. This approach allows
tools to be tightly integrated: all models are stored in the same repository and hence
can be shared among all tools. For example, model visualization, transformation and
code generation tools are integrated in the same Univers@lis repository. However this
approach has two disadvantages. Firstly, it does not address how functional
connection can be checked. On the other hand, Model Bus offers a metamodel for
describing modelling service signatures and also rules for checking the model type
compatibility. Secondly, the central repository approach is not suitable for distributed
environments: the remote access to the central repository is costly and can expose
security risks. To overcome this problem, Model Bus includes the Web Service
EntryPoint for supporting distributed tools.

Middleware architectures such as Web Service [33] and CORBA are similar to
Model Bus in the sense that they allow services (or services) to be described (e.g.
CORBA - IDL, Web Service - WSDL) and they define interfaces for invoking
services (CORBA - IIOP, Web Service - SOAP Bindings). However, those
architectures do not support services that have models as inputs and outputs. Model
Bus is dedicated to the modeling domain. It defines model types and model
representation forms to be used in modelling services.

The workflow process definition language (WPDL) [33] allows process
connections to be specified. Some work for applying WPDL for connecting modeling
tools [12] has been made. However this work did not address the functional and
concrete connection problems. For this moment, Model Bus does not have a
metamodel for expressing how services are connected. We think that a subset of
WPDL can be reused for expressing service connection in Model Bus.

7 Conclusion and Perspectives

Model Bus allows modelling services to be connected. To connect services, the
functional connection and the concrete connection problems must be solved. To solve
the functional connection problem, we proposed the Functional Description
metamodel for describing modelling service signatures. In particular a precise model
type definition was described. As a result, type compatibility of the connected
parameters can be automatically checked. To solve the concrete connection problem,
we defined a set of EntryPoints allowing services to be invoked. We have shown how

 Model Bus: Towards the Interoperability of Modelling Tools 31

the service descriptions can be used to automatically generate a Java interface for tool
providers to implement the services and for users to invoke the services. We have also
demonstrated how to generate codes for automating service connections.

The Model Bus prototype is implemented in Eclipse Platform. It offers users the
high-level facilities for browsing services and invoking any services. This prototype
proves that modelling service description can be described and Model Bus automates
the service invocation.

For future work, we plan to advance this research particularly in two aspects. At
this time, modelling services are described in terms of model element types and
model granularities. However, some services require model types to be more specific,
for example, a service that requires a UML class having at least one attribute, a
service that requires a UML class with stereotype ‹‹Table››. Therefore, we plan to
augment model type semantics with Object Constraint Language (OCL). We think
that this improvement will ensure better the correctness of service connections.

For the second aspect, we want to propose a method for rigorously expressing how
services are connected. For example, "output A of service S1 is connected to input B
of service S2". In particular, we need a metamodel for describing the structure of this
information. This metamodel will allow us to specify software development scenarios
involving many modelling services. We also look forwards to automating the
execution of those scenarios.

References

1. ArcStyler, http://www.io-software.com
2. ArgoUML, http://www.argouml.tigris.org
3. M. Belaunde: A Pragmatic Approach for Building a User-friendly and Flexible UML

Model Repository, 2nd International Conference on The Unified Modelling Language
(UML'99), 1999.

4. J. Bézivin et al.: First experiments with the ATL model transformation language:
Transforming XSLT into XQuery, 2nd OOPSLA Workshop on Generative Techniques in
the context of MDA, 2003.

5. X. Blanc et al.: Towards an Integrated Transformation Environment (ITE) for Model
Driven Development (MDD), to be published in the Invited Session Model Driven
Development, The 8th World Multi-Conference on Systemics, Cybernetics and
Informatics (SCI 2004), July 2004.

6. X. Blanc, M-P. Gervais, P. Sriplakich: Modeling Services and Web Services: Application
of ModelBus, to appear in the 2005 International Conference on Software Engineering
Research and Practice (SERP'05), 2005.

7. K. Czarnecki, S. Helsen: Classification of Model Transformation Approaches, 2nd
OOPSLA Workshop on Generative Techniques in the context of MDA, 2003.

8. T. Gardner et al.: A review of OMG MOF 2.0 Query /Views /Transformations
Submissions and Recommendations towards the final Standard, http://www.omg.org/
docs/ad/03-08-02.pdf

9. D. Hearnden, K. Raymond, J. Steel: Anti-Yacc: MOF-to-Text, EDOC 2002.
10. Eclipse Modeling Framework, http://www.eclipse.org/emf
11. Eclipse UML, http://www.omondo.com

32 X. Blanc, M.-P. Gervais, and P. Sriplakich

12. G. van Emde Boas: From the Workfloor: Developing Workflow for the Generative Model
Transformer, 2nd OOPSLA Workshop on Generative Techniques in the context of MDA,
2003.

13. Hamie: Towards Verifying Java Realizations of OCL-Constrained Design Models Using
JML, 6th IASTED International Conference on Software Engineering and Applications,
2002.

14. Java Community Process: Java Metadata Interface (JMI) Specification, http://www.
jcp.org, 2002.

15. Ledeczi et al.: The Generic Modeling Environment, Workshop on Intelligent Signal
Processing, 2001.

16. MIA, http://www.model-in-action.fr
17. ModFact, http://modfact.lip6.fr
18. NetBeans Metadata Repository, http://mdr.netbeans.org
19. Objecteering, http://www.objecteering.com
20. OMG: Human-Usable Textual Notation (HUTN) Specification, document no: ptc/04-01-

10, 2003.
21. OMG: MDA Guide Version 1.0.1, document no: omg/2003-06-01, 2003.
22. OMG: Meta Object Facility (MOF) Specification version 1.4, document no: formal/2002-

04-03, 2002.
23. OMG: Request for Proposal MOF2.0 Query /Views /Transformations, document no:

ad/2002-04-10, 2002.
24. OMG: Request for Proposal UML 2.0 OCL, document no: ad/2000-09-03, 2001.
25. OMG: UML 2.0 Superstructure Specification, document no: ptc/03-08-02, 2004.
26. OMG: Unified Modeling Language Specification version 1.4, document no: formal/01-09-

67, 2001.
27. OMG: XML Metadata Interchange (XMI) Specification version 2.0, document no:

formal/03-05-02, 2003.
28. Porres: M. Alanen, A Generic Deep Copy Algorithm for MOF-Based Models, Model

Driven Architecture:Foundations and Applications, 2003.
29. Poseidon, http:// www.gentleware.com
30. Rational Rose, http://www.rational.com
31. D. Riehle & al.: The Architecture of a UML Virtual Machine, OOPSLA 2001.
32. UMT-QVT: http://umt-qvt.sourceforge.net
33. W3C: Web Services Architecture, http://www.w3.org/TR/ws-arch, 2004.
34. Workflow Management Coalition: Workflow Process Definition Language, document no:

WFMC-TC-1025, version 1.0, 2002.

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 33 – 46, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Modeling in the Large and Modeling in the Small*

Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez

Atlas Group, INRIA and LINA, University of Nantes,
2, rue de la Houssinière - BP92208, 44322 Nantes Cedex 3, France

FirstName.LastName@univ-nantes.fr
Patrick.Valduriez@inria.fr

Abstract. As part of the AMMA project (ATLAS Model Management Architec-
ture), we are currently building several model management tools to support the
tasks of modeling in the large and of modeling in the small. The basic idea is to
define an experimental framework based on the principle of models as first class
entities. This allows us to investigate issues of conceptual and practical interest
in the field of model management applied to data-intensive applications. By
modeling in the small, we mean dealing with model and metamodel elements
and the relations between them. In this sense, ATL (ATLAS Transformation
Language) allows expressing automatic model transformations. We also moti-
vate the need for the "ModelWeaver" which handles fine-grained relationships
between elements of different metamodels with a different purpose than auto-
matic model transformation. By modeling in the large, we mean globally dealing
with models, metamodels and their properties and relations. We use the notion of
a "MegaModel" to describe a registry for models and metamodels. This paper
proposes a lightweight architectural style for a model-engineering platform as
well as a first prototype implementation demonstrating its feasibility.

1 Introduction

Following the seminal work of Deremer and Kron in 1976 [9], we believe that the
situation in the modeling area today is quite similar to the situation described at that
time in the programming area. Starting from this similarity, we distinguish in this
paper the two related activities of "modeling in the large" and "modeling in the small"
which we illustrate with specific examples. The term “Megamodel” has been chosen
to convey the idea of modeling in the large, establishing and using global relation-
ships and metadata on the basic macroscopic entities (mainly models and metamod-
els), ignoring the internal details of these global entities. There is probably not going
to be a unique monolithic modeling language (like UML 2.0) but instead an important
number of small domain specific languages (DSLs) [6], [10] and this will only be
possible if these small DSLs are well coordinated. To avoid the risk of fragmentation
[19], we need to offer a global vision, which can be provided by the activity of model-
ing in the large. On the contrary, there will always be an important need to precisely
define associations between model or metamodel elements, i.e. looking inside the

* This work is performed in the context of the "ModelWare" IST European project 511731.

34 J. Bézivin et al.

global entities. This activity of modeling in the small will be illustrated here by the
two related but different examples of model transformation and model weaving.

This paper is organized as follows. Section 2 recalls the main characteristics of the
MDE approach (Model Driven Engineering) and illustrates them within the particular
example of the AMMA (Atlas Model Management Architecture) project. Section 3
presents model transformation operations with a focus on ATL (Atlas Transformation
Language). Section 4 describes model weaving operations and their implications in
the context of the ATLAS Model Weaver (AMW), another important tool in the
AMMA platform. In particular, we discuss the conceptual differences between model
transformation and model weaving. Section 5 describes global model management
facilities and shows their practical impact with the help of the ATLAS MegaModel
Management tool (AM3) that is intended to support modeling in the large activities in
the AMMA platform.

2 AMMA: The Atlas Model Management Architecture

AMMA consists of two main sets of tools, one set of tools for modeling in the small
(model transformation and model weaving) and another set of tools for modeling in
the large based on what we call megamodels [5].

2.1 Models

A model is an artifact that conforms to a metamodel and represents a given aspect of a
system. These relations of conformance and representation are central to model engi-
neering [3]. A model is composed of model elements and conforms to a metamodel.
This means that the metamodel describes the various kinds of contained model ele-
ments and the way they are arranged, related and constrained. A language intended to
define metamodels is called a metametamodel.

In November 2000, the OMG proposed a new approach to interoperability named
MDA™ (Model Driven Architecture) [20]. In MDA, the metametamodel is MOF [15]
(Meta Object Facility) and the transformation language is based on the QVT 1.0
(Query View Transformation) specification [16]. MDA is one example of a much
broader approach known as Model Driven Engineering (MDE), encompassing many
popular research trends such as generative programming [8], domain specific lan-
guages, model integrated computing, model driven software development, model
management and much more.

A basic principle in MDE is to regard models as first class entities. Besides the ad-
vantage of conceptual simplicity, it also leads to clear architecture, efficient imple-
mentation, high scalability and good flexibility. As part of several projects, open
source platforms are being built with the intention to provide high interoperability not
only between recent model based tools, but also between legacy tools.

There are other representation systems that may also offer, outside the strict MDA
or even MDE boundaries, similar model engineering facilities. We call them technical
spaces [13]. They are often based on a three-level organization similar to the
metametamodel, metamodel and model of the MDA. One example is grammarware
[12] with EBNF, grammars and programs, but we could also consider XML docu-

 Modeling in the Large and Modeling in the Small 35

ments, Semantic Web, database systems, ontology engineering, etc. A Java program
may be viewed as a model conforming to the Java grammar. As a consequence, we
may consider, in the OMG scope, strict (OMG)-models (i.e. MOF-based like a UML
model); but we may also consider outside of this scope more general models such as a
Java source file, an XML document, a relational database schema, etc. A strict OMG-
model may be externalized as an XMI document and conforms to MOF-conforming
metamodel. In our approach we deal with OMG-models but also with non-OMG
models, based on other metametamodels.

2.2 Open Platforms for MDE

The advantage of using a model-based platform is that it allows many economies of
scale. For example model and metamodel repositories may handle efficient and uni-
form access to these models, metamodels and their elements in serialized or any other
mode. Transactional access, versioning and many other facilities may also be offered,
whatever the kind of considered model: executable or not, product or process, trans-
formation, business or platform, etc. An MDE platform is primarily intended for tool
integration. Several tools are usually available on such a platform.

AMMA defines a lightweight architectural style for MDE platforms. It is based on
the classical view of the software bus, adapted to the basic model engineering princi-
ples, and may support local or distributed implementations. A local platform is con-
ceptually similar to a software factory as described in [10]. Most of the tools available
in our current implementation of AMMA, that will be described later, are open source
tools, such as ATL, AWM, ATP and AM3. More than tools, these represent minimal
functional blocks in the abstract platform architecture. There is a set of conventions,
standards and protocols for plugging or unplugging MDE tools from the AMMA
platform. As an example, XMI is one standard for exchanging models and metamod-
els in serialized formats. Many other conventions will however allow other forms of
communication between tools operating on a platform.

The AM3 tool described in Section 5 defines the way metadata on a given platform
is managed in AMMA (registry on the models, metamodels, tools, services and all
other global entities accessible at a given time in a given scope). The fact that these
metadata are externally handled by megamodels allows achieving simplicity of the
MDE platform. Extending the scope of a local platform to a given distributed envi-
ronment may be performed by operations on the connected megamodels. The use of a
megamodel allows keeping the architecture of the software bus very simple because
the complexity is mainly handled externally by these megamodels conforming to
specific and adapted metamodels. The megamodel will typically describe artifacts
(models, metamodels, transformations, etc.), tools and services available in a given
scope. The management of tools and services may borrow ideas from the Web service
area (WSDL, UDDI, etc.) but we don’t wish to reinvent heavyweight stream-based
and event-based CORBA-like protocols for handling model-management tool inter-
operability on top of the Web. Instead, in the spirit of model engineering, we prefer
simple, adaptive and extensible solutions, based on generative approaches and bor-
rowing their power from the handling of metadata outside of the platform itself, in
these well-defined megamodels.

36 J. Bézivin et al.

3 ATL: The Atlas Transformation Language

This section presents the ATLAS model Transformation Language (ATL) and its
environment: an execution virtual machine and an IDE. ATL provides internal MDE
transformations, but we may also need facilities for handling external specific
external formats. This is handled by the way of projectors described at the end of the
section.

3.1 Model Transformation Languages

A model transformation language is used to define how a set of source models is
visited to create a set of target models. The language defines how the basic operations
on models can be performed using a specific set of language constructs (declarative
rules, imperative instruction sequences, etc.).

More complex transformation scenarios can be expressed using this simple defini-
tion. The set of source models can include a parametric model used to drive the trans-
formation on a specific path: this is the equivalent of the command line options given
to UNIX tools. Among target models, there can be such models as trace models. In
the context of model transformation, traceability is the process of collecting informa-
tion on a running transformation for later use. There are different kinds of traceability
ranging from the simple (and heavy) recording of every action performed to lighter,
more specialized and abstract traces which only keep links between some source and
target elements of interest.

3.2 ATL

ATL is a model transformation language, which has its abstract syntax defined using
a metamodel. This means that every ATL transformation is in fact a model, with all
the properties that are implied by this. For instance, a transformation program can be
the source or the target of another model transformation. ATL has been designed as
an answer to the QVT RFP [16] and is consequently in the MDA space. However, we
have ongoing work on M3 level independence: enabling the possibility to write trans-
formations for any MDE platform.

ATL is a hybrid of declarative and imperative constructs. While the recommended
style to write transformations is declarative, imperative concepts are implemented to
let the transformation writer decide which style is the more appropriate depending on
the context. The expression language is based on OCL 2.0 (Object Constraint
Language).

In declarative ATL, a transformation is composed of rules. Each rule specifies a set
of model element types (coming from the source metamodels), which are to be
matched, along with a Boolean expression, used to filter more precisely the set of
matched elements (e.g. all classes with a name beginning with a “C”). This constitutes
the source pattern, or left-hand side, of the rule. The target pattern, or right-hand side,
is composed of a set of model element types (coming from the target metamodels). To

 Modeling in the Large and Modeling in the Small 37

each of them is attached a set of bindings which specifies how the properties of the
target element are to be initialized. These declarative rules are named matched rules.

Imperative constructs in ATL can be specified in several places. An imperative
block can be added to any declarative rule to conveniently initialize target elements
requiring complex handling. Procedures, which are named called rules in contrast
with the declarative matched rules, can be placed in the transformation and be called
from any imperative block. Some procedures may bear the flags entrypoint or end-
point to specify that they should be executed either before or after the declarative
rules are. The content of imperative blocks consists of sequences of instructions
among: assignment, looping constructs, conditional constructs, etc. Complex algo-
rithms can therefore be implemented imperatively if necessary.

A hybrid language is interesting because it can be used declaratively whenever
possible. This means that some parts of a transformation and even full transforma-
tions, depending on their complexity, can be simply expressed. It is however possible
to revert to a more classical all-purpose imperative language when the declarative
constructs are not sufficient. However, we may then loose interesting properties that
come with the use of declarative constructs. This is why it is planned to define several
classes of ATL transformations, such as: declarative-only, imperative-only, hybrid,
etc. Specific tools depending on the class of the transformation will use constraints to
check whether a given model belongs to the class it supports. Thus, a transformation
reverser that generates the opposite of a given transformation may only accept de-
clarative transformations.

3.3 The Execution Virtual Machine

There are several practical solutions to implement ATL. We chose to define a Virtual
Machine (VM) for different reasons. The main advantage we see in this approach is
flexibility. As a matter of fact, AMMA is a research project and as such, ATL is con-
stantly evolving to explore new advanced possibilities. A single low-level implemen-
tation makes it possible to work on high-level transformation language concepts while
being rather independent of the actual tools used. For instance, the execution engine
was first written to use the Netbeans/MDR model handler but it now can also work on
Eclipse/EMF [7].The only part that had to be changed is the VM, since the ATL com-
piler and related tools run on top of it. Besides, despite the fact that our implementa-
tion has not been developed with performance in mind, the principal work to do to
have a faster execution of ATL transformations is to write a new machine with less
stringent flexibility requirements. It is of course still possible to develop a native code
(or even Java bytecode to benefit from its portability) compiler later if necessary.

Among other interesting aspects, the use of a stack-based instruction set makes
compiling OCL expressions quite simple. Moreover, other languages can also be
compiled to our virtual machine. We use this to bootstrap several tools including the
ATL compiler.

The ATL VM is a stack machine that uses a simple instruction set, which can be
divided into three subsets. The first one is composed of instructions that perform
model elements handling: creation, property access and assignment, operation call.
The second one contains control instructions: goto, if, collection iteration instructions.
There is also a set of stack handling instructions to push, pop and duplicate operands.

38 J. Bézivin et al.

The primitive types are implemented by a native (meaning: part of the VM, actu-
ally in Java) library based on the OCL 2.0 standard library. All operations on primi-
tive types are handled through operation calls to this library, e.g. 1+2 is performed as
1.+(2), the same way it is defined in the OCL specification.

While the choice of OCL as a navigation language for ATL has initially been
made, other alternatives may be considered later without impacting the global archi-
tecture. Furthermore, the OCL part of ATL is being reworked to be pluggable. This
means that it will be possible to reuse it in other languages for diverse purposes. One
of our first experiments will be with a constraint-based language to express well-
formedness rules on models. It will, for instance, be used to define the different
classes of ATL transformation.

3.4 The ATL IDE

In order to ease the transformation writing process, we developed an Integrated De-
velopment Environment (IDE) for ATL on top of Eclipse [11]: ATL Development
Tools (ADT) [1]. It provides several tools usually present in such environments.
There is a syntax-highlighting editor synchronized with an outline presenting a view
of the abstract syntax of the currently edited transformation program. We also devel-
oped wizards to create ATL projects for which a specific builder compiles ATL trans-
formations.

A launch configuration is available to launch transformations in run or debug
mode. In the latter, the execution can be debugged directly in Eclipse. The accompa-
nying documentation tutorial can be used to show usage of all these features. Most of
the ATL IDE components [1] behave the same way as their Java Development Tools
(JDT) counterpart in Eclipse. Developers used to any modern IDE should not be lost
when using ADT, which is illustrated in Figure 1.

3.5 Projectors

There are quite a lot of peripheral tools that are also useful to actually perform some
model transformation work in relation with other technical spaces. We have grouped
these tools under the name ATP (ATLAS Technical Projectors). Among these tools,
we have identified a very important subset which we call injectors and extractors
tools. As a matter of fact, there is a very large amount of pre-existing data that is not
XMI [17] compliant but that would greatly benefit from model transformation. This
data needs injection from its technical space (databases, flat files, EBNF, XML, etc.)
to the MDE technical space. The need for extraction is also quite important: many
existing tools do not read XMI. A simple example is the Java compiler. What we need
here is code generation, which may be seen as a specific case of model extraction.
The ATP goal is to host, in an organization as regular as possible, all drivers for ex-
ternal tool formats. It is an alternative to defining ad-hoc solutions for a lot of bridges
with MDE-models usually named for example Model2Text, Text2Model,
Model2EBNF, EBNF2Model, Model2SQL, SQL2Model, Model2XML,
XML2Model, Mode2Binary, Binary2Model, etc.

 Modeling in the Large and Modeling in the Small 39

Fig. 1. A view of ATL Development Tools (ADT)

Besides, even when dealing with MDE-based tools, it may be convenient to use
simple textual representations rather than always using a complex ad-hoc tool or
meta-tool. We designed the Kernel Metametamodel (KM3) to this end. It is a sim-
pletextual concrete syntax to represent metamodels. Although there are quite a lot of
tools to draw UML diagrams and although some of them actually export valid meta-
models in XMI, we came to the conclusion, after much experimentation, that an addi-
tional simple textual tool for metamodel representation is really useful.

4 AMW: The Atlas ModelWeaver

In order to provide a naive description of the ModelWeaver, let us suppose we have
two metamodels LeftMM and RightMM. We often need to establish links between
their related elements. There are many occasions when we need such functionality in
a MDE platform as will be discussed later. Concerning the set of links the following
issues have to be considered:

• The set of links cannot be automatically generated because it is often based on
human decisions or heuristics.

• It should be possible to record this set of links as a whole, in order to use it
later in various contexts.

• It should be possible to use this set of links as an input to automatic or semi-
automatic tools.

As a consequence, we come to the conclusion that a model weaving operation pro-
duces a precise weaving model WM. Like other models, this should be based on a
specific weaving metamodel WMM. The produced weaving model relates to the
source and target metamodels LeftMM and RightMM and thus remains linked to these
metamodels in a megamodel registry.

40 J. Bézivin et al.

Each link instance has to be typed conforming to a given WMM. There is no unique
type of link. Link types should provide weaving tools with useful information. Even if
some links contain only textual descriptions, these are valuable for tools supporting
documentation, manual refinements or performing heuristics.

4.1 Motivating Examples

In software engineering practices, the "Y organization" sometimes called the 2TUP
(Two Tracks Unified Process) has often been proposed as a methodological guide.
The OMG has promoted this idea in the MDA proposal where a Platform Independent
Model (PIM) should be weaved with a Platform Definition Model (PDM) to produce
a merged Platform Specific Model (PSM).

Let us suppose we have a PIM for a bank containing the class BankAccountNumber.
Suppose we have a PDM for an implementation platform containing classes LongInte-
ger and String. One of the most important events in the software development chain is
to take design decisions. One such design decision here would be for example to estab-
lish that the BankAccountNumber should be implemented using a String instead of a
LongInteger. We will not discuss here the validity of this decision. However, we would
like to ensure that this decision is well recorded, with the corresponding author, date,
rationale, etc. Furthermore this decision is probably based on previous decisions and
further decisions will be based on it.

What we see here is that a metamodel for design decisions would be most useful
with several properties and links associated to each design decision. We can under-
stand also that it would be very improbable to have an automatic weaving algorithm
since this is most often a human decision based on practical know-how. Of course the
user deciding of the weaving actions should be guided and helped by intelligent assis-
tants that may propose her/him several choices. These helpers may be sometimes
based on design patterns or more complex heuristics.

Let us take another example inspired by the work of Ph. Bernstein [2], [18]. We
have two address books to merge and we get both metamodels LeftMM and RightMM.
In LeftMM we have the class Name and in the second one the classes FirstName and
LastName. Here we need to establish a more complex link stating that these are re-
lated by an expression of concatenation.

4.2 Extensible Metamodels

One may assume that there is no standard metamodel for weaving operations since
most developers define their own. However, most often a given weaving metamodel
will be expressed as an extension of another weaving metamodel that allows building
a general weaving tool.

The ModelWeaver tool in AMMA reuses part of the infrastructure of the ATL IDE
based on the Eclipse Platform [1]. We suppose there is a stub weaving metamodel and
this is extended by specific metamodel extensions. The important goal is not to have
to build a specific tool for each weaving task or use case. The two notions on which
we are basing the design are metamodel extensions and Eclipse plugins.

The main idea of the implementation is that the GUI of the weaving tool is simple
and may be partially generated. From the left part, one can select any class or associa

-

 Modeling in the Large and Modeling in the Small 41

Fig. 2. First prototype for Atlas Model Weaver (AMW)

tion of the left metamodel and from the right part one can similarly select any class or
association of the right metamodel. In the central part appear all the main elements of
the weaving metamodel. Selecting a triple thus means creating a weaving link in the
resulting weaving model.

Proceeding in this way, we get a generic weaving tool, adaptable to any kind of
left, right and weaving metamodels. Of course, many design alternatives are being
explored in the actual building of this tool. An initial prototype has been built and
may give an idea of the user interface of AMW (see Figure 2).

As may be inferred from this prototype, a typical weaving session starts by upload-
ing the weaving metamodel. From this metamodel, part of the tool GUI may be auto-
matically generated. Then the left and the right metamodel may be chosen and the
weaving work may proceed.

4.3 Weaving Rationale

One question often asked is why we need model weaving operations in addition to
model transformations. This question raises at least the following issues:

• Issue of "arity": Usually a transformation takes one model as input and produces
another model as output, even if extensions to multiple input and output may be
considered. In contrast, a model weaving takes basically two models as input plus
one weaving metamodel.

• Issue of "automaticity": A transformation is basically an automatic operation
while a weaving may need the additional help of some heuristics or guidance to
assist the user in performing the operation.

42 J. Bézivin et al.

• Issue of "variability": A transformation is usually based on a fixed metamodel
(the metamodel of the transformation language) while there is no canonical stan-
dard weaving metamodel.

Although one may argue that there may be several levels of abstraction in trans-
formations (e.g. specifications and implementations of transformations), these three
mentioned issues allow concluding that transformation and weaving are different
problems. The first experiments with ATL and AMW confirmed this conclusion. In
some particular cases however, a weaving model may be itself transformed into a
transformation model.

Many research efforts like [22] are presently starting to investigate the relations be-
tween aspect-oriented programming and model engineering. This will be an important
source of inspiration for weaving metamodels in the future.

One important open research issue that will be addressed later is how to integrate
user guidance and domain dependent heuristics [11] in a model weaver. At this point
of the research we have yet no hint on how to integrate this kind of knowledge as
independent models. It is likely that those heuristics will have to be coded as Eclipse
plugins in a first stage.

5 AM3: The Atlas MegaModel Management Tool

The Atlas MegaModel Management, AM3, is an environment for modeling in the
large. With the macroscopic angle, models or metamodels are considered as a whole
together with tools, services and other global entities.

Connected to an open platform, tools will exchange models. But tools may also be
considered as models. A tool implements a number of services or operations. Each
service or operation is also represented as a model. An operation may have input and
output parameters, each being considered as a model. The interoperability platform
may be organized as an intelligent model exchange system according to several prin-
ciples and protocols such as the classical software bus or even more advanced archi-
tectures. To facilitate this exchange, the platform may use open standards such as
XMI (XML model Interchange), CMI (CORBA Model Interchange), JMI (Java
Model Interchange), etc.

Each time a given tool joins or leaves the platform, the associated megamodel is
updated. There are also plenty of other events that may change the megamodel like
the creation or suppression of a model or a metamodel, etc. Within one platform (lo-
cal or global), the megamodel records all available resources. For each platform, we
suppose there is an associated megamodel defining the metadata associated to this
platform. For the sake of simplicity, we shall suppose that a local platform may be
connected to another remote platform. This connection may be implemented by ex-
tension operations applied to the related megamodels.

5.1 Motivating Examples

To illustrate our purpose, we start by mentioning some situations, which one could
find useful to get macroscopic information on models. By macroscopic, we mainly

 Modeling in the Large and Modeling in the Small 43

mean relations that consider models as wholes and not their elements. Of course this
is a point-of-view related consideration since we are talking about elements of mega-
models.

A well-known global example of global link is the conformance relation between a
model and its metamodel. This is often considered as an implicit link, but we suggest
that this could also be explicitly captured in a megamodel with many advantages. One
interesting property of this global conformance relation between a model and its
metamodel is that it may be viewed as summarizing a set of relations between model
elements and metamodel elements (a relation we often name the "meta" relation). One
can clearly see here the coexistence between global model level relations and local
element based relations. In some cases, one is not interested in the local element level
relations because the global relation provides sufficient reliable information on what
is actually needed.

Another example is related to transformations. Recall that in our MDE landscape, a
transformation is a model, conforming to a given metamodel. So, if a model Mb has
been created from a model Ma by using transformation Mt, then we can keep this
global information in the megamodel. Supposing the transformation model Mt has a
link to its reverse transformation Mt-1, the memorized information can be used for
reverse engineering (from a modified model Mb) or for consistency checks. Being
stored in a repository, a given transformation Mt will have no meaning if the three
links are not provided to the source and target metamodels and the transformation
metamodel itself.

There is a whole set of information that could be regarded as global metadata. For
example, we could associate to a model the information of who has created it, when,
why, what for, who has updated it and the history of updates, etc. To a metamodel we
can associate its goal, the place where we can find its unique original definition,
alternate definitions, its authors, its history, its previous and next versions, etc. A very
naive implementation idea, for example, would be to imagine using a CVS for
different versions of a metamodel. The notion of megamodel goes much beyond this
kind of facilities, with a very low implementation cost and a much more regular
organization.

The idea of model driven architecture has sometimes been presented with mega-
models as described in [4] from where the diagram of Fig. 3 is extracted. What is
conveyed there is that a PSM is a model, in relation with a given PIM and with a
given PDM (Platform Description Model). From a PIM, it should be possible to know
which PSMs are available and to what platform they correspond. In simple cases, the

MDA_Model

PIM PSM PDM
business

*

platform

*

Fig. 3. Extended MDA classification

44 J. Bézivin et al.

description of the process that produced the PSM from the PIM and the PDM could
also be explicitly defined. Although somewhat idealized, these illustrations show how
megamodels may be used beyond mere documentation of architectural and process
approaches. The megamodel captures the idea of a “MDA component” as originally
presented in [4], but allows going much beyond this proposal. In its present state it
also allows to take into account solutions like the RAS OMG specification (Reusable
Asset Specification).

5.2 Use Cases for the Megamodel Manager

Let us consider a use case with two MDE platforms installed in specific organiza-
tions, one in Nantes and one in Oslo, for example. Within each organization, there are
different tools for capturing (Rational XDE, Poseidon, etc.) and storing/retrieving
models and metamodels. Some tools may be common. Each platform has been initial-
ized and whenever a tool is plugged or unplugged, the local megamodel is updated.
Also, each tool has the possibility/responsibility to update the local megamodel upon
achievement of specific operations. Examples of these operations may be:

• a user has created a model with a modeling tool such as Poseidon or Rational
XDE,

• a user has created a metamodel in KM3 format with a textual editor,
• a user has modified a metamodel,
• a user has created a transformation in ATL,
• a user has created a new model by running an ATL transformation,
• etc.

Let us suppose a user in Oslo wishes to generate a list of contacts in a given data-
base from a set of 5000 contacts contained in his/her local Microsoft Outlook system.
The first action would be to look on the local Oslo platform if there is a metamodel
for Microsoft Outlook available. If the metamodel is available in Oslo, the user will
look for a corresponding injector able to act as a driver to transform Outlook into
MDE formats. If these correspond exactly to his/her needs, then they will be used as
is. Otherwise they will be adapted. After that, the user will do the same for the target
database (metamodel and extractor). Finally the local platform will be queried for a
suitable transformation. If none corresponds, one will be built or adapted with the
help of suitable browsing/editing tools. In case of local unavailability, platforms that
have links with the Oslo platform will be queried, for example the Nantes platform.
The actions will be applied on this new platform. Alternatively, the user may consider
his/her platform to virtually correspond to all components available on the Oslo or
Nantes platform by a simple extension operation.

The problem of modeling in the large is related to several issues like typing [21],
packaging, tool integration and interoperability, etc. Uniform access to local and re-
mote resources may be facilitated by a megamodel-based approach as presented here.
A resource may be a model, a metamodel, a transformation, a process, a service, a tool,
etc. The first implementation of AMMA mainly deals with local platforms, but several
extensions to distributed environments are already considered. One particular goal is to
consider that professional modelers will exchange metamodels, transformations, etc.

 Modeling in the Large and Modeling in the Small 45

like other exchange music or video. As a consequence, peer-to-peer architectures will
be studied as an important alternative way to implement the MDE platform.

 Conclusion

In this paper, we have presented the main tools that are being progressively integrated
in the current AMMA prototype. Even if the development status of these tools is dif-
ferent, they share the common principle of models as first class entities and they have
been designed to collaborate in a complementary way.

Our work on the design implementation and first use of the AMMA platform has
led us to consider two kinds of activities in MDE: modeling in the large and modeling
in the small. The corresponding operations have been illustrated by four tools at dif-
ferent levels of maturity: ATL, AMW, ATP and AM3. Model transformation has been
recognized as an essential operation in MDE, but a lot of work yet remains to estab-
lish the exact application domain for QVT-like tools. Model weaving is presently in
search of recognition, but when one considers how active this subject has been in the
past in knowledge, data, and software engineering, it is very likely that applying
model engineering principles to this field will bring important results in the future. As
for megamodel management, it is probably the most recent question raised in the
MDE field. Here again, there are a lot of examples of successful usages of this global
approach in related domains and it is very likely that global registries will soon be
considered essential for dealing with the management of an increasing number of
global entities.

What we have tried to achieve with the AMMA platform is a balanced integration
of these complementary aspects. The idea of considering models as first class entities
has been the key principle to reach this goal. The AMMA experimental implementa-
tion of an MDE platform has allowed a first level of validation in the separation be-
tween the activities of modeling in the small and modeling in the large. There re-
mains, however, a considerable amount of research effort yet to be done before these
ideas translate into mainstream engineering platforms.

Acknowledgements

We would like to thank F. Allilaire, M. Didonet del Fabro, T. Idrissi, D. Lopes and G.
Sunye for their contributions to the AMMA project.

References

[1] Allilaire, F., Idrissi, T. ADT: Eclipse Development Tools for ATL. EWMDA-2,
September 2004, Kent, http://www.cs.kent.ac.uk/projects/kmf/mdaworkshop/

[2] Bernstein, P.A., Levy, A.Y., Pottinger, R. A.: A Vision for Management of Complex
Systems. MSR-TR-2000-53, Microsoft Research, Redmond, USA ftp://ftp.research.
microsoft.com/pub/tr/tr-2000-53.pdf

6

46 J. Bézivin et al.

[3] Bézivin, J.: In search of a Basic Principle for Model Driven Engineering. Novatica/
Upgrade, Vol. V, N°2, April 2004, pp. 21-24, http://www.upgrade-cepis.org/issues/
2004/2/up5-2Presentation.pdf

[4] Bézivin, J., Gérard, S., Muller, P.A., Rioux, L.: MDA Components: Challenges and Op-
portunities. Metamodelling for MDA, First International Workshop, York, UK, Novem-
ber 2003, http://www.cs.york.ac.uk/metamodel4mda/onlineProceedingsFinal.pdf

[5] Bézivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. OOPSLA & GPCE,
Workshop on best MDSD practices, Vancouver, Canada, 2004

[6] Booch, G., Brown, A.W., Iyengar, S., Rumbaugh, J., Selic, B.: An MDA Manifesto.
Business Process Trends/MDA Journal, May 2004.

[7] Budinsky, F., Steinnberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework, EMF, The Eclipse series, ISBN 0-13-142542-0, 2004

[8] Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools and Applica-
tions. Addison-Wesley, Reading, MA, USA, June 2000

[9] Deremer, F., Kron, H.: Programming in the Large versus Programming in the Small.
IEEE Trans. On Software Eng. June 1976, http://portal.acm.org/citation.
cfm?id=390016.808431

[10] Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories, Wiley, ISBN 0-471-
20284-3, 2004

[11] Heuvel, W.J.: Matching and Adaptation: Core Techniques for MDA-(ADM)-driven Inte-
gration of new Business. Applications with Wrapped Legacy Systems. MELS, 2004

[12] Klint, P., Lämmel, R., Kort, J., Klusener, S., Verhoef, C., Verhoeven, E.J.: Engineering
of Grammarware. http://www.cs.vu.nl/grammarware/

[13] Kurtev, I., Bézivin, J., Aksit, M.: Technical Spaces: An Initial Appraisal. CoopIS,
DOA’2002 Federated Conferences, Industrial track, Irvine, 2002
http://www.sciences.univ-nantes.fr/lina/atl/publications/

[14] Lemesle, R.: Transformation Rules Based on Metamodeling. EDOC,'98, La Jolla,
California, 3-5, pp.113-122, November 1998

[15] OMG/MOF: Meta Object Facility (MOF) Specification. OMG Document AD/97-08-14,
September 1997. http://www.omg.org

[16] OMG/RFP/QVT: MOF 2.0 Query/Views/Transformations RFP. OMG document
ad/2002-04-10. http://www.omg.org

[17] OMG/XMI: XML Model Interchange (XMI) OMG Document AD/98-10-05, October
1998. http://www.omg.org

[18] Pottinger, R.A., Bernstein, P.A.: Merging models Based on Given Correspondences,
Proc. 29th VLDB Conference, Berlin, Germany, 2003

[19] Schmidt, D.: Model driven Middelware for Component-based Distributed Systems. In-
vited talk, EDOC’2004, Monterey, Ca., September 2004

[20] Soley, R.: OMG staff Model-Driven Architecture. OMG document. November 2000.
http://www.omg.org

[21] Willink, E.D. OMELET: Exploiting Meta-Models as Type Systems. EWMDA-2, Can-
terbury, England, September 2004

[22] Wu, H., Gray, J., Roychoudhury, S., Melnik, M. Weaving a Debugging Aspect into Do-
main-Specific Language Grammars. ACM, 2004

Model-Driven Development of Reconfigurable
Mechatronic Systems with MECHATRONIC UML�

Sven Burmester��, Holger Giese, and Matthias Tichy

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

{burmi, hg, mtt}@upb.de

Abstract. Today, advanced technical systems are complex, reconfigurable
mechatronic systems where most control and reconfiguration functionality is rea-
lized in software. A number of requirements have to be satisfied in order to ap-
ply the model-driven development approach and the UML for mechatronic sys-
tems: The UML design models must support the specification of the required
hard real-time event processing. The real-time coordination in the UML models
must embed the continuous control behavior in form of feedback-controllers to
allow for the specification of discrete and continuous hybrid systems. Advanced
solutions further require the dynamic exchange of feedback controllers at run-
time (reconfiguration). Thus, a modeling of rather complex interplays between
the information processing and the control is essential. Due to the safety-critical
character of mechatronic systems, the resulting UML models of complex, dis-
tributed systems and their real-time behavior must be verifiable in spite of the
complex structure and the embedded reconfigurable control elements. Finally, an
automatic code synthesis has to map the specification correctly to code. In this pa-
per, we will present our MECHATRONIC UML approach, which fulfills all these
requirements. The approach is motivated and illustrated by means of a running
example.

1 Introduction

An emerging field of software engineering research concerns complex, reconfigurable
mechatronic systems. Mechatronic systems [1] combine technologies from mechani-
cal and electrical engineering as well as from computer science. They are real-time
systems because reactions to the environment usually have to be completed within a
specific, predictable time and they are hybrid systems because they usually consist of
discrete control modes as well as implementations of continuous feedback controllers.
As incorrect software can lead to failures with fatal consequences, they are also safety-
critical systems.

� This work was developed in the course of the Special Research Initiative 614 - Self-optimizing
Concepts and Structures in Mechanical Engineering - University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemeinschaft.

�� Supported by the International Graduate School of Dynamic Intelligent Systems. University
of Paderborn.

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 47–61, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

48 S. Burmester, H. Giese, and M. Tichy

Mechatronic systems, which had been single, autonomous systems, have been used
in distributed settings, which require extensive coordination, in recent times. Due to
the new requirements stemming from distribution and coordination scenarios, a new
generation of reconfigurable mechatronic systems has emerged. Those reconfigurable
mechatronic systems change their behavior in order to comply with certain roles, which
result from coordination and contracts with other mechatronic systems.

This reconfiguration leads to an increased complexity and thus makes it more diffi-
cult to fulfill safety-critical requirements. To guarantee safety for reconfigurable mecha-
tronic systems, we extend in this paper the Model Driven Architecture (MDA) ap-
proach [2] for the design of hybrid mechatronic real-time systems with reconfiguration.

The today existing UML specification languages for technical systems [3,4,5,6,7,8]
only provide solutions for either modeling, verification, or code generation, but fail to
provide seamless support for all three requirements, which would be necessary for the
model-driven development of reconfigurable mechatronic systems. Therefore, a spec-
ification language (model) is required, that contains at first sufficient information to
specify the real-time behavior of the system in such a manner that high level modeling,
verification, and semantically correct source code generation are possible. Methods for
verification are required that guarantee the correctness of the whole distributed, hard
real-time system. Reconfigurable mechatronic systems are typically too complex to di-
rectly verify the whole system using model checking. Instead, the model must enable
the compositional model checking which considers just the component’s external vis-
ible behavior to verify the real-time coordination. When specifying the details of the
component’s behavior within the model, it must be possible to guarantee that adding
the details does not invalidate the component’s external behavior taken into account
during verification.

In this paper, we present the MECHATRONIC UML approach which allows the
model-driven development of complex, distributed, safety-critical real-time systems
which supports modeling, verification, and code generation by employing earlier in-
ventions namely hybrid mechatronic components [9] and real-time coordination pat-
terns [10]. Two different views need to be distinguished: the structural view and the
behavioral view. The structural view describes the overall system that consists of mul-
tiple component instances, which are possibly distributed, interconnected with each
other, and which are exchanging messages via communication. In the behavioral view,
the behavior of single components is specified. As proposed in the MDA approach,
structure and behavior are specified with platform independent models which are trans-
formed to platform specific code, later. We apply UML diagrams [3] as platform inde-
pendent models. UML state machines are extended by more expressive constructs for
the description of real-time behavior [11,12]. Component diagrams are refined such that
block diagrams [13], which are the most common description technique in the domain
of feedback control engineering, can be smoothly integrated [9].

The required steps during the model-driven development with the MECHA-
TRONIC UML approach can basically be divided into three phases which will be de-
scribed in detail in Section 3 (see Figure 1). In the first two phases a correct platform in-
dependent model (PIM) is specified: In the first phase (steps 1-3), the system structure is
defined which is used to identify where in the system communication is required. Each

Model-Driven Development of Reconfigurable Mechatronic Systems 49

Pattern
Library

Verification of
Real−Time Properties

3)

Specification Real−Time
Coordination Pattern

2)

Refinement By
Compositional Embedding

6)

Synthesizing
Source Code

7)

next design step

design step

library

Step 1: Section 3.1
Steps 2−3: Section 3.2
Steps 4−5: Section 3.3
Steps 6−7: Section 3.4

1)

Specification Structure

Verification of Refinement Relations
between Roles and Component

Verification of the Component

5)

with Refined Pattern Roles
Composing Components

4)

PIM specification

PSM & Code
Generation

Legend:

Fig. 1. Seamless support for the design of mechatronic systems

communication is described by an individual real-time coordination pattern. These co-
ordination patterns have different roles, which contain the real-time logic for the coordi-
nation, and a real-time constraint, which is proven w.r.t. certain communication network
properties. If such a coordination pattern has been designed and successfully verified,
it is added to a pattern library for reuse.

In the second phase (steps 4-6), the mechatronic components are built using the pre-
fabricated already verified coordination patterns, stored in the library of patterns. The
real-time behavior of the component is a refinement of the combination of pattern roles
and additional specified behavior. The employed refinement notion ensures the verified
real-time properties. In addition, the component’s internal coordination has to be veri-
fied to exclude inconsistent behavior or deadlocks. In the next step further components
(e.g. hybrid ones) are embedded into the superordinated component. Simple consistency
checks ensure again that the verified real-time properties of the coordination patterns
are still valid in spite of the embedding. Thus, a complete verification of the system is
not necessary, because the verification results of the individual patterns and components
still hold for the complete system. In the last phase, the platform specific model (PSM)
and finally platform specific source code is synthesized in step 7.

In the next section, we present the application scenario, which is used within this pa-
per to exemplify the application of our approach. In Section 3, we present our approach
w.r.t. system structure, real-time behavior, real-time coordination, and the integration
of hybrid behavior. Our approach is then compared with the UML 2.0 specification [3]
in Section 4 and other related work in Section 5. We finally conclude in Section 6 and
present current and future work.

2 Application Example

As concrete example, we present the design of a self-optimizing version of the soft-
ware for the RailCab research project1 which aims at using a passive track system with
self-optimizing shuttles that operate individually and make independent and decentral-
ized operational decisions. The vision of the railcab project is to provide the comfort of

1 http://www-nbp.upb.de/en

50 S. Burmester, H. Giese, and M. Tichy

individual traffic concerning scheduling and on-demand availability of transportation
as well as individually equipped cars on the one hand and the cost and resource effec-
tiveness of public transport on the other hand. The modular railway system combines
sophisticated undercarriages with the advantages of new actuation techniques as em-
ployed in the Transrapid2 to increase passenger comfort while still enabling high speed
transportation and (re-)use of the existing railway tracks.

One particular problem is to reduce the energy consumption due to air resistance
by coordinating the autonomously operating shuttles in such a way that they build con-
voys whenever possible. Such convoys are built on-demand and require a small dis-
tance between the different shuttles such that a high reduction of energy consumption
is achieved. Coordination between speed control units of the shuttles becomes a safety-
critical aspect and results in a number of hard real-time constraints, which have to be
addressed when building the control software of the shuttles.

When shuttles approach each other, they use wireless communication to coordinate
the building of the convoy. Dependent on the position within the convoy they have to
change their behavior. For example a rear shuttle will no longer hold the velocity on
a constant level, but the distance to the front shuttle. Therefore, it dynamically has to
exchange the feedback controller which controls its acceleration. Further, a shuttle will
reduce the intensity of braking when another one drives in a short distance behind to
avoid a rear-end collision. Consequently, the shuttle design must ensure on the one hand
that the communication fulfills all safety requirements (e.g. safe coordination when
building or breaking convoys, no deadlocks) and that the exchange of the dynamic
controller (reconfiguration) guarantees safety and stability.

As a running example within this paper we consider a simplified version of the
convoy building problem. Namely we assume that only convoys of two shuttles are
built.

3 Model-Driven Development with MECHATRONIC UML

For the component-based development of mechatronic systems with UML, we extend
the UML by notions for the specification of continuous and real-time behavior. The
real-time extensions for the UML are specially geared towards verification of safety-
critical properties. In the following, we will describe our approach in detail using the
above mentioned example.

3.1 System Structure

UML component diagrams are used for the specification of the structure of our systems.
Component diagrams specify components and their interaction in form of connectors.
We distinguish component types and their instances during runtime. Connectors model
the communication between different components via the ports and interfaces and the
communication properties w.r.t. message loss, latency, etc. Ports are distinct interaction
points between components and are typed by provided and required interfaces.

2 http://www.transrapid.de/en

Model-Driven Development of Reconfigurable Mechatronic Systems 51

Shuttle

:AC

RearRole FrontRole

Fig. 2. Type specification of component Shuttle

For our example scenario, Figure 2 shows the component type for the shuttle. The
Shuttle component contains a hybrid AccelerationControl (AC) component instance.
This component computes the acceleration needed to achieve a specific goal (keep-
ing a specified distance or keeping a specified speed level). The AccelerationControl
component has five incoming continuous ports for the current velocity vcur, the current
distance Δcur, and the velocity of the front shuttle vFront provided by sensors, and the
required velocity vreq and the required distance Δreq which are parameterized refer-
ence inputs. Further, AccelerationControl has one outgoing continuous port that sends
the acceleration values to the appropriate hardware actuator devices. In addition (the
details are presented in Section 3.4), the AC component contains discrete behavior to
switch between keeping distance or keeping velocity on a constant level, and, thus, is a
hybrid component. For clearer presentation, the sensors and actuators connected to the
input ports and the output port of the AC component have been hidden.

3.2 Real-Time Coordination

Interaction between component instances during runtime is a major part in the design
of complex, reconfigurable, mechatronic systems. In our scenario, a shuttle forms a
convoy with another shuttle via the RearRole and FrontRole interfaces. In the domain
of mechatronic systems, an autonomous unit like a shuttle reacts in a local environment
and the interfaces to its environment are strictly defined (as e.g. a shuttle trying to
build a convoy has to interact only with one other shuttle and not with a third one
which is a few kilometers away). This domain-specific restriction is the reason why
usually only relative simple coordination patterns have to be constructed, i.e. patterns
with simple coordination protocols between roles, limited numbers of input signals and
a fixed number of roles.

The interaction between two shuttles w.r.t. building a convoy is one such simple co-
ordination pattern. Figure 3 shows the ConvoyCoordination pattern between two shut-
tles. The protocol for building and breaking convoys is specified in the roles of this
pattern (see Figure 4). Components in the domain of mechatronic systems must meet
real-time requirements. Therefore, we use our real-time variant of UML state machines
called Real-Time Statecharts [11,12] for the specification of role behavior. They al-
low to apply constructs from timed automata [14,15] like clocks, time guards, time
invariants and further annotations like worst case execution times and deadlines (see

52 S. Burmester, H. Giese, and M. Tichy

Fig. 3. Component Diagram and Patterns

default

wait

noConvoy

answerdefault

default

/ rearRole.breakConvoyRejected
rearRole.breakConvoyProposal

/ rearRole.convoyProposalRejected

rearRole.convoyProposal /

convoy
/ rearRole.breakConvoy
rearRole.breakConvoyProposal

/ rearRole.startConvoy

wait

noConvoy

convoy

frontRole.convoyProposalRejected /

/ frontRole.convoyProposal

wait
frontRole.breakConvoyProposalRejected /

/ frontRole.breakConvoyProposal

default

frontRole.breakConvoy / frontRole.startConvoy /

a) Rear Role

b) Front Role

{t0}
[1 ≤ t0 ≤ 1000]

Fig. 4. Statechart of the RearRole role and the FrontRole role

Section 3.3). As shown in [11], these annotations enable an automatic implementation
on a real physical machine with limited resources.

If an event has the form interface.message it means that the transition is triggered
when message is received via the interface interface. Side-effects of the form inter-
face.message describe the sending of message to a receiver which is connected via
interface. Later, we will use events where no interface is specified. Then message is
local and sent or received within the same statechart.

Initially, both roles are in state noConvoy::default, which means that they are not
in a convoy. The rear role non-deterministically chooses whether to propose building a
convoy or not. After having chosen to propose a convoy, a message is sent to the other
shuttle resp. its front role. The front role chooses non-deterministically to reject or to
accept the proposal after max. 1000 msec. In the first case, both statecharts revert to
the noConvoy::default state. In the second case, both roles switch to the convoy::default
state.

Eventually, the rear shuttle non-deterministically chooses to propose a break of the
convoy and sends this proposal to the front shuttle. The front shuttle chooses non-

Model-Driven Development of Reconfigurable Mechatronic Systems 53

deterministically to reject or accept that proposal. In the first case, both shuttles remain
in convoy-mode. In the second case, the front shuttle replies by an approval message,
and both roles switch into their respective noConvoy::default states.

For the connector which represents the wireless network we do not apply an explicit
statechart, but instead specify its QoS characteristics such as throughput, maximal delay
etc. in the form of connector attributes. In our example, we assume that the connector
forwards incoming signals with a delay of 1 up to 5 msec. The connector is unsafe in
the sense that it might fail at any time, such that we set our specific QoS characteristic
reliable to false.

To provide safe behavior, the following RT-OCL [16] constraint must hold. It de-
mands that a combination of role states where the front role is in state noConvoy and
the rear role is in state convoy is not possible. This is required because such a situation
would allow the front shuttle to brake with full intensity although another shuttle drives
in short distance behind, which causes a rear-end collision.

context DistanceCoordination inv:
not (self.oclInState(RearRole::Main::convoy) and

self.oclInState(FrontRole::Main::noConvoy))

It is shown in [10], that this property holds. As mentioned there, those patterns are
individually constructed and verified. In the next section, we show how components are
developed without compromising the verification results by composing roles of differ-
ent coordination patterns and refining their behavior. In our example, the Shuttle com-
ponent is a combination of refined versions of the RearRole and the FrontRole. For a
component, which combines different patterns respective the roles, the verified proper-
ties still hold due to the approach presented in [10]. Thus, components for mechatronic
systems are developed in a way similar to a construction kit using several proven and
verified building blocks and refine them to suit different requirements.

3.3 Local Real-Time Behavior

Figure 5 depicts the behavior of the Shuttle component from Figure 2, taken from [10]
and extended with real-time annotations. The Real-Time Statechart consists of three
orthogonal states FrontRole, RearRole, and Synchronization. FrontRole and RearRole
are refinements of the role behaviors from Figure 4 and specify in detail the commu-
nication that is required to build and to break convoys. Synchronization coordinates
the communication and is responsible for initiating and breaking convoys. The three
sub-states of Synchronization represent whether the shuttle is in the convoy at the first
position (convoyFront), at second position (convoyRear), or whether no convoy is built
at all (noConvoy). The whole statechart is a refinement of both role descriptions as it just
resolves the non-determinism from the roles from Figure 4 and does not add additional
behavior.

As mentioned above, components in the domain of mechatronic systems must meet
real-time requirements. In the specific example it needs not only to be specified that,
e.g. RearRole has to send a startConvoy message after receiving convoyOK, but also that
this has to be finished within a specific, predictable time. Therefore, we apply our Real-
Time Statecharts [11] for specification. Real-Time Statecharts respect that the firing of
transitions consumes time and that real physical, mechatronic systems can never react

54 S. Burmester, H. Giese, and M. Tichy

isConvoyOk
/ noConvoy

when(convoyUseful)
/ buildConvoy

defaultH wait

when(convoyNotUseful)
/ doBreakConvoy

convoyFront
isConvoyOK
/ convoyOK

noConvoy convoyRear
breakConvoy /

breakConvoy /

/ FrontRole.breakConvoyRejected
FrontRole.breakConvoyProposal

default

default

 breakConvoy

FrontRole.breakConvoyProposal
/ FrontRole.breakConvoy

Synchronization

/ RearRole.startConvoy
convoyOk

wait

waitdefault

RearRole.breakConvoyProposalRejected /

RearRole.convoyProposal / isConvoyOK

noConvoy / RearRole.convoyProposalRejectednoConvoy

/ breakConvoy
RearRole.breakConvoy

doBreakConvoy
/ RearRole.breakConvoyProposal

default

Convoy

RearRole

FrontRole.startConvoy /

buildConvoy / FrontRole.convoyProposal

FrontRole.convoyProposalRejected / breakConvoy

wait

convoy

noConvoy

FrontRole

d1

d1

d1

{t0}
d1 [15 ≤ t0]

d1

d1

d1

dc

dc

dc dc

dc
dc

dc

dc

dc

dc dc

Fig. 5. Behavior of the Shuttle component

in zero time, but always with a delay. To represent this in the model, we make use of the
deadline construct:

In Figure 5 so called deadline intervals dc and d1 are used to specify a minimum
and a maximum duration for the time between triggering a transition and finishing its
execution. E.g. sending the message convoyProposalRejected to RearRole has to be
finished within the time specified by dc after receiving the message noConvoy in state
FrontRole::noConvoy::wait. As another example for predictable timing behavior (real-
time behavior) the change in Synchronization from noConvoy to convoyFront has to be
finished within d1.

3.4 Controller Integration

The Acceleration Control (AC) component contained in the Shuttle component (cf.
Figure 2) is a hybrid component. It consists of two discrete control modes which rep-
resent whether the shuttle is under velocity control or under distance control (see Fig-
ure 6). Further it has continuous in- and outputs. Dependent on the active discrete mode
either the current and the required velocity are used for the velocity controller or the cur-

Model-Driven Development of Reconfigurable Mechatronic Systems 55

:Velocity Controller

DistanceControl

:Distance Controller

VelocityControl

applyVC

applyDC

a a
vFirst

Δreq

Δcurvcur

vreq

df2

ffade2

df1ffade1

Fig. 6. Behavior of the AC component

applyDC

applyVC

ac:AC [VelocityControl] ac:AC [DistanceControl]

Δcur

df1

df2

vcur

vreq
a Δreq

vFront

a

Fig. 7. Interface Statechart of the AC component

rent and required distance to the front shuttle as well as the velocity of the first shuttle
are used for the distance controller. The output a is the acceleration in any mode.

In order to embed the continuous controllers into the discrete states, the Real-Time
Statecharts are extended to hybrid ones. In Hybrid Statecharts each discrete state is
associated with a configuration of embedded component instances [9]. In this example,
each configuration consists of just one single feedback controller.

When a change occurs between the discrete states, a discrete switch between the
controllers could lead to an unsteadiness in the output signal a. This unsteadiness will
stimulate additional excitations which could lead to instability even when both con-
trollers are stable on their own. In order to avoid these unsteadinesses, output cross-
fading is applied [9]. This is specified by a fading function ffade1 resp. ffade2 and a
minimal and a maximal fading duration (df1 resp. df2) which is specified as an interval
as well.

Although the hybrid AC component has five different continuous input signals,
never all of them are required. When the component is in velocity control mode only
vcur and vreq are required, in distance control mode only Δcur, Δreq , and vFirst are
required. These dynamic interfaces are visualized by the so called Interface Statechart
in Figure 7.

The Interface Statechart abstracts from the component’s internals as it just contains
the externally relevant behavior: the different control modes, the modes’ continuous
in- and outputs, and the deadline information for switches between the control modes.
Whether fading is required and which kind of fading function is applied and which
components are associated to the discrete states is not important for the external view.

56 S. Burmester, H. Giese, and M. Tichy

H wait

isConvoyOK
/ convoyOK

/ noConvoy
isConvoyOk

convoyFront noConvoy
default

/ doBreakConvoy
when(convoyNotUseful)

after (15 msec)

convoyRear

ac:AC [DistanceControl]
breakConvoy / breakConvoy /

/ buildConvoy
when(convoyUseful)

Synchronization

ac:AC [VelocityControl] ac:AC [VelocityControl]

d1

d1

d1

a

Δcur
Δreq

vFront

d1

d1

d1

d1

vcur

vreq
a

vcur

vreq
a

Fig. 8. Behavioral embedding

This interface representation is used when the different components are embedded into
each other (see below).

The Shuttle and the AC component, which have been designed independent of each
other, are embedded hierarchically from the structural point of view (cf. Figure 2). As
their behavior is executed concurrently, we say AC is hierarchically, parallel embedded
into Shuttle. As it makes no sense for AC to be in state DistanceControl while Synchro-
nization is in state convoyFront, which represents the situation when there is no further
shuttle before, the two behavior descriptions have to be coordinated.

Therefore, the Shuttle statechart from Figure 5 is extended to a Hybrid Statechart.
Figure 8 depicts the orthogonal Synchronization state, whose sub-states embed different
configurations each consisting of one AC instance and its current internal state and con-
tinuous interface. So in Figure 8 is specified that AC has to be in state DistanceControl
when Synchronization is in state convoyRear. If Synchronization is in state noConvoy or
convoyFront, AC has to be in state VelocityControl. Consequently, a state change within
the orthogonal Synchronization state implies a state change in its embedded AC compo-
nent. As only the external visible information of the AC component is important when
it is embedded, the form of the embedded component is equal to the single states of the
Interface Statechart from Figure 7.

This kind of modeling has the advantage that it supports the decomposition into
multiple components that is required to handle the complexity in mechatronic systems.
Further the control engineering know-how is separated from the software engineering
know-how: The discrete coordination and communication is specified by the statechart
from Figure 5, the continuous behavior and the restrictions of the controller exchange is
specified in Figure 6 and the later integration is specified in Figure 8. Another advantage
is the support for flexible continuous interfaces.

In order to ensure that the results of the compositional verification are not invali-
dated by the detailed realization of the Shuttle component, the component realization
has to be a refinement of the role behavior (see Section 3.2). The statechart from Fig-
ure 5 is a refinement of the roles from Figure 4. Consequently, it needs to be ensured
that the embedding of AC still just refines the specified real-time behavior from Figure 5
and is not adding additional behavior or is in conflict with the real-time specification of
this superordinated component.

Assume, for example, in Figures 5 and 8 is specified that a change from state no-
Convoy to convoyRear has to be finished after 200 msec and that this change implies a

Model-Driven Development of Reconfigurable Mechatronic Systems 57

change of the embedded AC component from VelocityControl to DistanceControl. Then
in Figure 7 the minimal fading duration may not be above 200 msec.

This example demonstrates how consistency is approved by simple syntactical
checks between the superordinated component and the Interface Statecharts of the em-
bedded components: In the above example df1 ⊆ dc must be satisfied. Such checks
have to be enforced for every possible change of the global state (the current global
state consists of the current states of all components). Due to the hierarchically, parallel
embedding, the global state space is restricted: Although Synchronization consists of
3 states and AC of 2 states, the hierarchical parallel composition does not consist of
2 ∗ 3 = 6 states, but just of 3 states.3 This information is contained in the specification
in Figure 8 and does not need to be derived by a costly reachability analysis. Conse-
quently, the number of consistency checks to be enforced are thus not exponential in
the number of states. If these consistency checks are successful, the results of the com-
positional model checking presented in Section 3.2 are valid even for components that
embed further components in the hierarchical, parallel manner (cf. [9]).

4 MECHATRONIC UML and Standard UML

The UML 2.0 [3] can be considered as the currently evolving de facto standard
for modeling complex software systems. Event though the standard UML 2.0 is not
specifically tailored for technical systems, it is frequently applied also in this domain
(cf. [17,4,18,19]) and actually includes most of the concepts of the Real-Time Object-
Oriented Modeling (ROOM) approach [20]. However, as the ROOM concepts focus
on architectural design and do not address the real-time or hybrid behavior of the op-
erational model at all, UML supports real-time aspects only rudimentarily and hybrid
behavior not at all. In the presented MECHATRONIC UML approach, the architectural
design must employ standard UML components and patterns in a well-defined rigorous
manner. The real-time communication protocols of each port or pattern role have to be
specified. While UML 2.0 offers so called Protocol State Machines (PSM) to do so,
we require that our real-time extension of the UML state machines named Real-Time
Statecharts are employed.

A relevant UML extension w.r.t. real-time is the UML Profile for Schedulability,
Performance, and Time [4]. The profile defines general resource and time models which
are used to describe the real-time specific attributes of the modeling elements such as
schedulability parameters or quality of service (QoS) characteristics. Besides an ab-
stract logic model, a more concrete engineering model can be specified by using these
extensions. The engineering model is later used for the required model analysis and
code generation. However, appropriate concepts for the real-time modeling at the logic
model level are missing and real-time aspects are only present at the level of the engi-
neering model. Thus, the developer has to map his logical model onto the technical con-
cepts such as threads and periods manually. Then, he has to test and adjust the logical
model as well as its mapping to the engineering model manually until the engineering
model mets all real-time constraints.

3 This is because the state combinations (convoyFront, DistanceControl), (noConvoy, Dis-
tanceControl), and (convoyRear, VelocityControl) are not reachable.

58 S. Burmester, H. Giese, and M. Tichy

The presented approach in contrast addresses real-time aspects at the logical model
level. The employed Real-Time Statecharts support deadlines, worst case execution
times, clocks, clock resets, time guards, and time invariants. Therefore they provide
powerful abstract means to specify complex timing requirements. A formally defined
semantics for them further enables the compositional verification by means of model
checking. MECHATRONIC UML thus really enables the model-driven development of
real-time systems as all required timing requirements are contained in the (logical)
model and the synthesis of the mapping to threads and their periods can be done au-
tomatically.

A request for proposals for UML for System Engineering (UML for SE) [21] by the
OMG currently address UML in the context of technical systems. The idea of UML for
SE is to provide a language that supports the system engineer in modeling and analyzing
software, hardware, logical and physical subsystems, data, personnel, procedures, and
facilities. The presented approach addresses some of these issues, but mainly focuses
on the specific requirements of hybrid, reconfigurable, mechatronic systems.

One distinguishing proposal for UML for SE is the Systems Modelling Language
(SysML),4 which extends a subset of the UML 2.0 specification. One extension, related
to the design of continuous and hybrid systems are Structured Classes, that describe the
fine structure of a class extended by continuous communication links between ports.
In Parametric Diagrams the parametric (arithmetic) relations between numerical at-
tributes of instances are specified and the nodes of Activity Diagrams are extended
with continuous functions and in- and outputs. This enables to model simple difference
equations, but using this approach to model complex feedback-controllers leads to an
overwhelming complexity. The specification or the integration of continuous behavior
in form of continuous components is not supported. Further SysML does not support
reconfiguration, as the specification of parametric relations is always static.

In contrast to UML 2.0 and the SysML proposal, our approach provides the re-
quired support for modeling of hybrid, reconfigurable systems by first refining UML
ports into discrete, continuous, and hybrid ones such that hybrid components can be
modeled with UML components. To specify the reconfiguration and hybrid behavior
of these components, we extended Real-Time Statecharts towards Hybrid Statecharts
which employ UML instance diagrams of the subordinated components to specify the
state-dependent embedding and coordination. The formal definition of the embedding
for Hybrid Statecharts enables to check efficiently whether an embedding is consistent.
A consistent embedding further ensures, that the real-time properties, verified through
compositional model checking, still hold for the more detailed hybrid system behavior.

5 Related Work

Besides UML and its profiles, a number of proprietary approaches for the modeling of
technical systems with UML exist.

Within the IST project AIT-WOODDES hierarchical timed automata (HTA) [5]
have been invented to enable the modeling and verification of complex real-time be-
havior. HTA are a hierarchial extension of timed automata [15] and they provide most

4 http://www.sysml.org

Model-Driven Development of Reconfigurable Mechatronic Systems 59

of the powerful modeling concepts of statecharts as well as clocks. A mapping to multi-
ple parallel running flat timed automata permits to verify the model by using the model
checker UPPAAL [14]. Code synthesis has also been addressed in [22], however, the
approach is restricted to flat automata and does not take into account the delays that
occur when transitions are fired. Our approach for code generation respects hierarchy,
parallelism, and the real-time specifications [11,23].

The aim of the IST OMEGA project [6] is to ensure the correctness of embedded
systems. In the approach, the UML has been extended by additional time constructs and
a formally defined semantics is intended. However, unlike our approach, there is no sup-
port for hybrid behavior and compositional verification. Verification is only supported
for the semi-automatic verification via theorem proving.

Like the presented approach, HyROOM [7] and the underlying HyCharts [8] sup-
port the component-based modeling of hybrid systems. The software’s architecture is
specified similar to ROOM/UML-RT and the behavior is specified by statecharts whose
states are associated with systems of ordinary differential equations and differential
constraints or Matlab/Simulink block diagrams. These approaches provide means for
the reconfiguration of systems in terms of changing the continuous behavior. But it is
only possible to reconfigure the model inside a component on one hierarchy-level. In
contrast to that, our approach allows for a complex reconfiguration altering the structure
and concerning more than one hierarchy-level. Support for compositional verification
of models is not addressed by any of these approaches.

6 Conclusion and Future Work

Reconfigurable mechatronic systems in the domain of safety-critical distributed systems
must be designed with great care. MECHATRONIC UML not only supports the model-
driven development of such systems respecting real-time requirements, but also allows
for a mixture of discrete event-based as well as continuous behavior. In addition, the
applied modeling approach contains means for the compositional verification of safety-
critical properties. Finally, source code is synthesized from the models, which respects
the real-time constraints and safety requirements of the model.

MECHATRONIC UML further refines the industry standard UML where possible
and provides a well defined UML subset as well as a guideline how to develop safety-
critical reconfigurable mechatronic systems.

Tool support (in form of a number of plug-ins for the Fujaba Tool Suite5) for the
specification, verification and automatic source code synthesis of the Real-Time State-
charts and the real-time coordination patterns exists. For the support of hybrid behavior
a prototypic implementation exists and we are currently working on the tool support.

In the future, we plan to employ graph transformations [24] to describe the recon-
figuration of the behavior w.r.t. the online addition or removal of coordination pattern
roles. By this reconfiguration, the hybrid components reconfigure themselves to differ-
ent coordination scenarios to optimize their memory and processing power footprints.
These reconfigurations specified by graph transformations are also targets for the veri-
fication of safety-critical properties.

5 http://www.fujaba.de

60 S. Burmester, H. Giese, and M. Tichy

We further plan to integrate MECHATRONIC UML with our approaches for auto-
matic deployment [25] and dependability [26] with UML.

Acknowledgements. The authors thank Oliver Oberschelp for the support in the con-
trol engineering domain.

References

1. Bradley, D., Seward, D., Dawson, D., Burge, S.: Mechatronics. Stanley Thornes (2000)
2. Object Management Group: Model Driven Architecture (MDA) Edited by Joaquin Miller

and Jishnu Mukerji. (2001)
3. Object Management Group: UML 2.0 Superstructure Specification. (2003) Document

ptc/03-08-02.
4. OMG: UML Profile for Schedulability, Performance, and Time Specification. OMG Docu-

ment ptc/02-03-02 (2002)
5. David, A., Möller, M., Yi, W.: Formal Verification of UML Statecharts with Real-Time

Extensions. In Kutsche, R.D., Weber, H., eds.: 5th International Conference on Fundamental
Approaches to Software Engineering (FASE 2002), April 2002, Grenoble, France. Volume
2306 of LNCS., Springer (2002) 218–232

6. Graf, S., Hooman, J.: Correct Development of Embedded Systems. In Oquendo, F., Warboys,
B., Morrision, R., eds.: Proceedings of the First European Workshop on Software Architec-
ture, EWSA2004. Volume 3047 of Lecture Notes in Computer Science., St Andrews, UK,
Springer Verlag (2004) 241–249

7. Stauner, T., Pretschner, A., Péter, I.: Approaching a Discrete-Continuous UML: Tool Sup-
port and Formalization. In: Proc. UML’2001 workshop on Practical UML-Based Rigorous
Development Methods – Countering or Integrating the eXtremists, Toronto, Canada (2001)
242–257

8. Stauner, T.: Systematic Development of Hybrid Systems. PhD thesis, Technische Universität
München (2001)

9. Giese, H., Burmester, S., Schäfer, W., Oberschelp, O.: Modular Design and Verification
of Component-Based Mechatronic Systems with Online-Reconfiguration. In: Proc. of 12th
ACM SIGSOFT Foundations of Software Engineering 2004 (FSE 2004), Newport Beach,
USA, ACM (2004)

10. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Compositional
Verification of Real-Time UML Designs. In: Proc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland. (2003)

11. Giese, H., Burmester, S.: Real-Time Statechart Semantics. Technical Report tr-ri-03-239,
University of Paderborn, Paderborn, Germany (2003)

12. Burmester, S., Giese, H.: The Fujaba Real-Time Statechart PlugIn. In: Proc. of the Fujaba
Days 2003, Kassel, Germany. (2003)

13. Ogata, K.: Modern Control Engineering. Prentice Hall (2002)
14. Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Springer International Journal of

Software Tools for Technology 1 (1997)
15. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for Real-

Time Systems. In: Proc. of IEEE Symposium on Logic in Computer Science. (1992)
16. Flake, S., Mueller, W.: An OCL Extension for Real-Time Constraints. In: Object Model-

ing with the OCL: The Rationale behind the Object Constraint Language. Volume 2263 of
LNCS. Springer (2002) 150–171

Model-Driven Development of Reconfigurable Mechatronic Systems 61

17. Bichler, L., Radermacher, A., Schürr, A.: Evaluation uml extensions for modeling realtime
systems. In: Proc. on the 2002 IEEE Workshop on Object-oriented Realtime-dependable
Systems WORDS’02, San Diego, USA, IEEE Computer Society Press (2002) 271–278

18. Gu, Z., Kodase, S., Wang, S., Shin, K.G.: A Model-Based Approach to System-Level De-
pendency and Real-Time Analysis of Embedded Software. In: The 9th IEEE Real-Time and
Embedded Technology and Applications Symposium, Toronto, Canada. (2003)

19. Masse, J., Kim, S., Hong, S.: Tool Set Implementation for Scenario-based Multithreading of
UML-RT Models and Experimental Validation. In: The 9th IEEE Real-Time and Embedded
Technology and Applications Symposium, Toronto, Canada. (2003)

20. Selic, B., Gullekson, G., Ward, P.: Real-Time Object-Oriented Modeling. John Wiley and
Sons, Inc. (1994)

21. Object Management Group: UML for System Engineering Request for Proposal. (2003)
Document ad/03-03-41.

22. Amnell, T., David, A., Fersman, E., Pettersson, M.O.M.P., Yi, W.: Tools for Real-Time
UML: Formal Verification and Code Synthesis. In: Workshop on Specification, Implemen-
tation and Validation of Object-oriented Embedded Systems (SIVOES’2001). (2001)

23. Burmester, S., Giese, H., Gambuzza, A., Oberschelp, O.: Partitioning and Modular Code
Synthesis for Reconfigurable Mechatronic Software Components. In: Proc. of European
Simulation and Modelling Conference (ESMc’2004), Paris, France. (2004) (accepted).

24. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph Transforma-
tion. Volume 1. World Scientific, Singapore (1999)

25. Tichy, M., Schilling, D., Giese, H.: Design of Self-Managing Dependable Systems with
UML and Fault Tolerance Patterns. In: Proc. of the Workshop on Self-Managed Systems
(WOSS) 2004, FSE 2004 Workshop, Newport Beach, USA. (2004)

26. Tichy, M., Giese, H.: A Self-Optimizing Run-Time Architecture for Configurable Depend-
ability of Services. In de Lemos, R., Gacek, C., Romanovsky, A., eds.: Architecting De-
pendable Systems II. Volume 3069 of Lecture Notes in Computer Science. Springer Verlag
(2004) 25–51

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 62 – 76, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Model Transformation Language MOLA

Audris Kalnins, Janis Barzdins, and Edgars Celms

University of Latvia, IMCS, 29 Raina boulevard, Riga, Latvia
{Audris.Kalnins, Janis.Barzdins, Edgars.Celms}@mii.lu.lv

Abstract. The paper describes a new graphical model transformation language
MOLA. The basic idea of MOLA is to merge traditional structured program-
ming as a control structure with pattern-based transformation rules. The key
language element is a graphical loop concept. The main goal of MOLA is to de-
scribe model transformations in a natural and easy readable way.

1 Introduction

The Model Driven Architecture (MDA) initiative treats models as proper artifacts
during software development process and model-to-model transformations as a proper
part of this process. Therefore there is a growing need for model transformation lan-
guages and tools that would be highly acceptable by users. Though model transforma-
tions would be built by a relatively small community of advanced users, the prerequi-
site for broad acceptance of transformations by system developers is their easy read-
ability and customizability.

Model transformation languages to a great degree are a new type of languages
when compared to design and programming languages. The only sound assumption
here is that all models in the MDA process (either UML-based models or other)
should be based on metamodels conforming to MOF 2.0 standards.

The need for standardization in the area of model transformation languages led to
the MOF 2.0 Query/Views/Transformations (QVT) request for Proposals (RFP)[1]
from OMG.

To a great degree the success of the MDA initiative and of QVT in particular will
depend on the availability of a concrete syntax for model-to-model transformations
that is able to express non-trivial transformations in a clear and compact format that
would be useful for industrial production of business software [2].

QVT submissions by several consortiums have been made [3, 4, 5], but all of them
are far from a final version of a model transformation language. Currently the pro-
posal most likely to be accepted seems [3] – actually a merge of several initial pro-
posals. Several serious proposals for transformation languages have been provided
outside the OMG activities. The most interesting and complete of them seem to be
UMLX [6] and GReAT [7]. Some interesting transformation language proposals use
only textual syntax, e.g., [15].

According to our view, and many others [2], model transformations should be de-
fined graphically, but should combine the graphical form with text where appropriate.
Graphical forms of transformations have the advantage of being able to represent

 Model Transformation Language MOLA 63

mappings between patterns in source and target models in a direct way. This is the
motivation behind visual languages such as UMLX, GReAT and the others proposed
in the QVT submissions. Unfortunately, the currently proposed visual notations make
it quite difficult to understand a transformation.

The common setting for all transformation languages is such that the model to be
transformed (source model) is supplied as a set of class and association instances
conforming to the source metamodel. The result of transformation is the target
model - the set of instances conforming to the target metamodel. Therefore the
transformation has to operate on instance sets specified by a class diagram (actually,
the subset of class notation, which is supported by MOF).

Approaches that use graphical notation of model transformations draw on the theo-
retical work on graph transformations. Hence it follows that most of these transforma-
tion languages define transformations as sets of related rules. Each rule has a pattern
and action part, where the pattern has to been found (matched) in the existing instance
set and the actions specify the modifications related to the matched subset of in-
stances. This schema is used in all of the abovementioned graphical transformation
languages. Languages really differ in the strength of pattern definition mechanisms
and control structures governing the execution order of rules [8].

It should be mentioned that an early pioneer in the area (well before the MDA era)
is the PROGRES language [9]. This semi-graphical language offered pattern-based
graph rewrite rules applicable to “models” described by schemas (actually, metamod-
els). The execution of rules is governed by the traditional structured control constructs –
sequence, branch and loop, though in the form of Dijkstra’s guarded commands.

The current MDA-related graphical transformation languages – UMLX and
GReAT use relatively sophisticated pattern definition mechanisms with cardinality
specifications (slightly more elaborated in GReAT). The control structure in UMLX
is completely based on recursive invocations of rules. The control structure of GReAT
is based on hierarchical dataflow-like diagrams, where the only missing control struc-
ture is an explicit notation for loops (loops are hidden in patterns). The proposal [3]
also offers elaborated patterns, which are combined with a good support for recursive
control structures. Since the PROGRES project is now inactive, there currently is no
transformation language based on traditional control structures.

This paper proposes a new transformation language MOLA (MOdel transforma-
tion LAnguage). The prime goal of MOLA is to provide an easy readable graphical
transformation language by combining traditional structured programming in a
graphical form (a sort of “structured flowcharts”) with rules based on relatively sim-
ple patterns. This goal is achieved by introducing a natural graphical loop concept,
augmented by an explicit loop variable. The loop elements can easily be combined
with rule patterns. Other structured control elements are introduced in a similar way.
In the result, most of typical model transformation algorithms, which are inherently
more iterative than recursive, can be specified in a natural way. The paper demon-
strates this on the traditional MDA class-to-database transformation example and on
the statechart flattening example – an especially convincing one. Some extensions of
MOLA are also sketched.

64 A. Kalnins, J. Barzdins, and E. Celms

2 Basic Constructs of MOLA

This section presents a brief overview of basic constructs of MOLA. The MOLA lan-
guage is a procedural graphical language, with control structures taken from tradi-
tional structured programming. The elements specific to model transformations can
easily be combined with traditional language elements such as assignment statements.
A program in MOLA is sequence of graphical statements, linked by dashed arrows:

A statement can be an assignment or a rule – an elementary instance transforma-
tion statement, however the most used statement type in MOLA is a loop. There are
two types of loops, which will be depicted in the following way:

(the first type) or (the second type).

A loop body always contains one or more sequences of graphical statements. Each
body sequence starts with a loop head statement declaring the loop variable for this
sequence. In MOLA the loop variable represents an instance of the given class. In
order to distinguish it from other class instances defining its context, the loop variable

is shown with a bold frame: c:Class . The loop head statement, besides the

loop variable, typically contains also instance selection conditions, which constrain
the environment of a valid loop variable instance. The UML object (instance specifi-
cation) notation is used both for the loop variable and its environment description – it
expresses the fact that any valid instance from the instance set of the given class in the
source model must be used as a loop variable value during the loop execution.

The semantics of both types of loops differ in the following way. A type one loop
is executed once for each valid instance from the instance set – but the instance set
itself may be modified (extended) during the loop execution. The type two loop con-
tinues execution while there is at least one valid variable instance in the instance set
(consequently, the same loop variable instance may be processed several times). In an
analogy to some existing set and list processing languages, it is natural to call type
one loops FOREACH loops and type two loops - WHILE loops in MOLA.

Another important statement type is the rule – the specification of an elementary
instance transformation. A rule contains the pattern specification – a set of elements
representing class instances and association instances (links), built in accordance with
the metamodel. In addition, the rule contains the action specification – what new class
instances are to be built, what associations (links) drawn, what instances are to be
deleted, what attributes are to be assigned value etc. Its semantics is obvious – locate
a pattern instance in the source model and perform the specified actions. When a rule
has to be applied – it is determined by the loop whose body contains the rule. A rule
can be combined with the loop head – a loop head can also contain actions, which are
performed for each valid loop variable instance.

 Model Transformation Language MOLA 65

All MOLA statements, except loops, are graphically enclosed in grey rounded rec-

tangles: .

Further, more precise definitions of MOLA syntax and semantics will be given on
toy examples.

Let us assume that a toy metamodel visible in Fig.1 is used.

A
attrA1:Integer
attrA2:String

B
attrB:String

W
attrW:String

roleA

roleB 0..1
 *

roleA

roleW

 0..1 *

Fig. 1. Metamodel for the toy example

Then a MOLA program, which sets the attribute attrA1 to 1 for those instances of
the class A that are linked to at least one instance of class B, is shown in Fig. 2. The
loop (FOREACH type) contains two statements – the loop head and a trivial rule
which sets the value of attribute attrA1 in the loop variable. First, some comments on
the loop head statement. The selection condition consisting of an instance of B linked
by the only available association (roleB) to the loop variable (a:A) requires that at
least one such instance of B must exist for a given instance of A to be a valid loop
variable instance. We want to emphasize that an association with no constraints
attached in the loop head (or in a rule pattern) always means – there exists at least
one instance (link) of such an association. The loop head in MOLA is also a kind of
pattern.

The second statement in the loop references the same instance of A – the loop
variable, this is shown by prefixing the instance name by the @ character.

The second program example (in Fig.3) finds how many instances of B are linked
to each instance of A.

a1: A
attrA1 := 0

@a1: A
attrA1 := attrA1+1

b: B

a: A b: B

@a: A
attrA1 :=1

roleB

roleB

Fig. 2. Program finding A’s linked to a B Fig. 3. Program counting B’s linked to an A

66 A. Kalnins, J. Barzdins, and E. Celms

a1: A

@a1: A

b: B
: W
attrW :=@a1.attrA2+b.attrB

roleB

#resultW

roleA

roleW

Fig. 4. Program building W for each B

This example demonstrates a natural use of nested loops. The outer loop (with the
loop variable a:A) is executed for every instance of A. The loop head sets also the
initial value of the attribute attrA1. The nested loop, which is executed for those in-
stances of B which are linked to the current A, performs the counting.

The next more complicated task is to build an instance of W for each B which is
linked to an A, link it by an association (roleW) to the A and assign to its string pa-
rameter (attrW) the concatenation of string parameters in the corresponding instances
of A and B. Fig. 4 shows the corresponding MOLA program.

The same nested loops as in the previous example are used. But here the inner loop
head is also a rule with more complicated action – building an instance of W, linking
it to the current loop variable instance of the outer loop and setting the required value
of attrW.

The new elements – instances and links are shown with dotted lines (and in red
color) in MOLA. The expression for attrW references the attribute values from other
instances – they are qualified by the corresponding instance names. The association
linking the instance of W to the instance of B is a special one – it is the so called
mapping association (which actually should also be specified in the metamodel).
Mapping associations are typically used in MDA-related transformations for setting
the context of next subordinate transformations and for tracing instances between
models (therefore they normally link elements from different metamodels). Role
names of mapping associations are prefixed by the # character in MOLA.

Two more MOLA constructs should be explained here. The first one is the NOT
constraint on associations in patterns – both in loop heads and ordinary rules. It ex-
presses the negation of the condition specified by the association – there must be no
instance with specified properties linked by the given link. Fig. 5 shows an example
where an instance of W is built for those A which have no B attached.

b: Ba: A

: W

a: A
{attrA2="persistent"}

: WroleB
{NOT}

roleA
roleW

roleA

roleW

Fig. 5. NOT constraint Fig. 6. Attribute constraint

 Model Transformation Language MOLA 67

Another one is attribute constraints. Fig. 6 shows an example where an instance of
W is built for those A where the attribute attrA2 has the specified value. The Boolean
expression in braces in general uses OCL syntax (in addition, it may contain also ex-
plicit qualified references to other instances in the pattern).

There are some more elements of MOLA which are not used in the examples of
this paper and therefore will not be explained in detail. Besides the attributes in the
source metamodel, instances may have “temporary” computed attributes which can be
used as variables for storing values during the computation. These temporary attrib-
utes are also defined in the metamodel. Similarly, there may be temporary associa-
tions. There is also one more control structure – an equivalent of the if-then-else (or
case) statement. There is also a subprogram concept in MOLA and the subprogram
call statement, where the parameters can be references to instances used in the calling
program (typically, to loop variables) or simple values. The called subprogram has
access to the source model and can add or modify elements in the target model.

3 UML Class Model to Relational Model Example in MOLA

Further description of MOLA will be given on the basis of the “standard benchmark
example” for model transformation languages – the UML class model to relational
database model transformation example. This example has been used for most of
model transformation language proposals (see e.g., [3, 4, 6, 10]). However, no two
papers use exactly the same specification of the example. Here we have chosen the
version used by A. Kleppe and J. Warmer in their MDA book [10].

The source is a simplified class diagram built according to the metamodel in Fig. 7
(it is a small subset of the actual UML metamodel). Any class which is present in the
source model has to be transformed into a database table. Any class attribute has to be
converted into a table column. Attribute types are assumed to be simple data types –
the problem of “flattening” the class-typed attributes is not considered in this version.
We assume here that type names in class diagram and SQL coincide (in reality it is
not exactly so!).

Classifier
name:String

TypedElement
name:String

Association

Feature
visibility:VisibilityKind

DataType Class

AttributeAssociationEnd
lower:LowerBound
upper:UpperBound
composition:Boolean

typed
type *
 1

 association
 end 1
2

 class
 feature 1

 *

otherEnd 0..1

Fig. 7. Simplified class metamodel

68 A. Kalnins, J. Barzdins, and E. Celms

Table
name:String

Column
name:String
nullable:Boolean

SQLDataType
name:String

Key
name:String

ForeignKey
name:String

 key

 column

 0..1

 1..*

primary

 1

 0..1

type
 1

 table
 column 1

 *

referencedKey

 *

 1

 table

foreign

 1

 *

 column

foreign

 1..*

 *

Fig. 8. Simplified relational database metamodel

cl: Class

@cl: Class
t: Table
name:=cl.name

k: Key
name:=@cl.name+"ID"

int: SQLDataType
{name="integer"}

col: Column
name :=@cl.name+"ID"
nullable :=false

at: Attribute

@cl: Class

dt: DataType

t: Table

col: Column
name :=at.name
nullable :=true

: SQLDataType
{name=dt.name}

type

#tableForCl

feature

#tableForCl

#keyColForCl

primary

#keyForCl

type

table
column

type

#colForAttr

table

column

Fig. 9. Class to database transformation (part 1)

Each converted table has an “artificial” primary key column with the type integer.
The treatment of associations is quite realistic. One-one or one-to-many associations
result into a foreign key and a column for it in the appropriate table (for one-one – at
both ends). A many-to-many association is converted into a special table consisting
only of foreign key columns (and having no primary key). Each foreign key refer-
ences the corresponding primary key.

 Model Transformation Language MOLA 69

We should remind that according to UML semantics, in the metamodel the type as-
sociation from an Association End leads the Class at that end, but class association –
to Class at the opposite end.

The resulting database description must correspond to a simplified SQL metamodel
given in Fig. 8.

The metamodels and transformation specification are exactly as in [10] except that
some inconsistencies and elements unused in the given task are removed.

More formally, in MOLA the source and target metamodels (Fig. 7 and 8) are
combined into one common metamodel, where mapping associations can also be

as: Association e1: AssociationEnd
{upper=1}

e: AssociationEnd
{upper=1}

@as: Association endCl: Class pk: Key

othEndCl: Class

int: SQLDataType
{name="integer"}

tb: Table

fk: ForeignKey
name :=e.name

fkCol: Column
name :=e.name
nullable :=false

e1: AssociationEnd
{upper=1}

astb: Table
name :=as.name

as: Association

@as: Association

e: AssociationEnd

t: Table

endCl: Class pk: Key

fk: ForeignKey
name :=e.name

fkCol: Column
name :=e.name
nullable :=false

int: SQLDataType
{name="integer"}

type

end

#tableForCl

association
#keyForCl

class

association

type

#tableForAssoc

type #keyForClass
referencedKey

table

column

foreign

column

end
{NOT}

#tableForAssoc

table
column

foreigntable

#colForEnd

#fkForEnd foreign

column

foreign
table

#colForEnd
type

#fkForEnd

referencedKey

Fig. 10. Class to database transformation (part 2)

70 A. Kalnins, J. Barzdins, and E. Celms

specified. We do not present this combined metamodel here, role names of mapping
associations can be deduced from MOLA diagrams (Fig. 9 and 10).

Fig. 9 and 10 show the complete transformation program in MOLA. The part 1
(Fig. 9) implements the required class-to-table transformations, but the part 2 – the
transformation of associations into foreign keys and appropriate columns.

A complete program in MOLA starts with the UML start symbol and ends with
end symbol. In between there are statements connected by arrows; in the given pro-
gram – three top-level loops (one for class instances and two for associations). All
loops are of FOREACH type.

Now some more detailed comments for this program. The first loop is executed
once for each class in the source set and during each loop execution the corresponding
database elements – the table, the primary key and the column for it are built. The
mapping association #tableForCl is used in the condition for the inner loop – to en-
sure that the correct Table instance is taken. This loop is executed once for each at-
tribute and builds a column for each one. Here it is assumed that SQL data types (as
instances of the corresponding class) are pre-built and the appropriate one can always
be selected.

The second and third loops in totality are executed for each association instance –
the second loop for those instances that have multiplicity 0..1 or 1..1 at least at one
end and the third one for those which are many-to-many. This is achieved by adding
mutually exclusive selection conditions to both loop variable definitions. These condi-
tions are given in a graphical form. The first one uses the already mentioned in sec-
tion 2 fact that an association in a condition (pattern) requires the existence of the
given instance. The other condition uses the {NOT} constraint attached to the associa-
tion – no such instance can exist. Then both loops have an inner loop - for both ends
(even in the first case there may be two “one-ends”). Both inner loops use mapping
associations built by previous rules (#keyForCl, #tableForCl) in their conditions. The
type for “foreign columns” is integer – as well as that for “primary columns”.

An alternative form of control structure for processing associations could be one
loop with an if-then-else statement in the body (Fig. 11).

One more alternative representation could be to make the Fig. 10 a transformation
of its own (e.g., TransformAssociations) and add the call statement TransformAssocia

.

as:Association

@as:Association

e1:AssociationEnd
{upper=1}

e1:AssociationEnd
{upper=1}

@as:Association

 end end {NOT}

Fig. 11. Loop with an if-then-else statement

-

 Model Transformation Language MOLA 71

tions (this time without parameters) to the bottom of Fig. 9. In our case there is no
great need in this since the whole transformation example actually fits in one A4
page. However, the subprogram mechanism in MOLA permits to define arbitrarily
complicated transformations by well-proven methods of structural programming.

4 Statechart Flattening Example

This section presents another example – the flattening of a UML statechart. This ex-
ample was first used in [7] to demonstrate the GReAT transformation language. Due
to space limits, we use a version where the statechart can contain only composite
states with one region (OR-states in terms of [7]). Composite states may contain any
type of states, with an arbitrary nesting level. Such a statechart must be transformed
into an equivalent “flat” statechart (which contains only simple states). The informal
flattening algorithm is well known (most probably, formulated by D. Harel [11]). A
version of this example with much simplified problem statement is present also in [3].

The simplified metamodel of the “full” (hierarchical) statechart is depicted in
Fig. 12. There are some constraints to the metamodel specifying what is a valid state-
chart. There are “normal” transitions for which the event name is nonempty and “spe-
cial” ones with empty event. These empty transitions have a special role for state
structuring. Each composite state must contain exactly one initial state (an instance of
Init) and may have several final states. There must be exactly one empty transition
from the initial state of a composite state (leading to the “default” internal state). The
same way, there must be exactly one empty transition from the composite state itself
- the default exit. This exit is used when a contained final state is reached. Otherwise,
transitions may freely cross composite state boundaries and all other transitions must
be named. Named transitions from a composite state have a special meaning (the “in-
terrupting” events), they actually mean an equally named transition from any con-
tained “normal” state – not initial or final. This is the most used semantics of compos-
ite states (there are also some variations).

All states have names – but those for initial and final states actually are not used.
Names are unique only within a composite state (it acts as a namespace) and at the top
level.

SimpleState Init FinCompositeState

State
name:String

Transition
event: String [0..1]

in
dst *
 1

out
src *
 1

container

contents

 0..1

 1..*

Fig. 12. Metamodel of hierarchical statechart

72 A. Kalnins, J. Barzdins, and E. Celms

The traditional flattening algorithm is formulated in a recursive way. Take a top-
most composite state (i.e., one not contained in another composite state). There are
three ways how transitions related to this state must be modified:

1. Transitions entering the composite state itself must be redirected to the state to
which the empty transition from its initial state leads.

2. Transitions leading to a final state of this composite state must be redirected to
the state to which the empty transition from the composite state leads.

3. Named transitions from the composite state must be converted into a set of
equally named transitions from all its “normal” states (with the same destination)

Then the name of the composite state must be prefixed to all its contained normal
states and the composite state must be removed (together with its initial and final
states and involved empty transitions). All this must be repeated until only simple
states (and top level initial/final ones) remain.

A simple analysis of this algorithm shows that the redirection of transitions may be
done independently of the composite state removal – you can apply the three redirec-
tion rules until all transitions start/end at simple states (or top initial/final). The set of
simple states is not modified during the process – only their names are modified.

Namely this modified algorithm is implemented in the MOLA program in Fig. 13.
It contains two top-level loops – the first one performs the transition redirection and
the second – the removal of composite states.

Both top-level loops are WHILE-type – especially, in the first loop a transition
may be processed several times until its source and destination states reach their final
position. A closer analysis shows that the second loop actually could be of
FOREACH type, but the original algorithm suggests WHILE.

The program performs a model update – source and target metamodels coincide,
simply, some metaclasses cannot have instances in the target model. Mapping asso-
ciations are not used in this example.

The first loop contains three loop head statements – all specify the instance
t:Transition as a loop variable, but with different selection conditions. According to
the semantics of MOLA, any Transition instance satisfying one of the conditions (one
at a time!) is taken and the corresponding rule is applied (note that the conditions are
not mutually exclusive). All this is performed until none of the conditions applies –
then all transitions have their final positions. The first two rules contain a dashed line –
the association (link) removal symbol. The link is used in the selection condition, but
then removed by the rule. The third path through the loop contains the instance re-
moval symbol.

Namely the use of several lop heads per loop is a strength of MOLA – this way
inherently recursive algorithms can be implemented by loops.

The second loop – the removal of composite states also has a recursive nature to a
certain degree – it implements the so-called transitive closure with respect to finding
the deepest constituents (simple states) and computing their names accordingly to the
path of descent.

It shows that transitive closure can be implemented in MOLA in a natural way
(even the FOREACH loop could be used for this). The other constructs in this loop
are “traditional” – except, may be, the fact that several instances may be deleted by a
rule in MOLA.

 Model Transformation Language MOLA 73

c: CompositeState

ds: State

t: Transition
{event->notEmpty()}

@t: Transition

: Compos iteState

ss: State

t: Transition
{event->notEmpty()}

nt: Trans ition
{event->isEmpty()}

: Init

ds: State

ss: State

: Fin

: Compos iteState

nt: Trans ition
{event->isEmpty()}

ds: State

t: Transit ion
{event->notEmpty()}

ss: State

@ds: State

@c: CompositeState

: Transition
event:=t.event

ctr: Trans ition
{event->isEmpty()}

@tc: CompositeState

@tc: CompositeState

: Init
intr: Transition
{event->isEmpty()}

tc: CompositeState
name

c: CompositeState

@tc: CompositeState

f: Fin

@f: Fin

@tc: CompositeState

@tc: CompositeState

: State
name:=@tc.name+"-"+name

dst

contents

srcsrc

dst

contents

src

src

dst

contents

src

contents
src

container
{NOT}

contents

contents

contents

dst

contents

src

dst

dst

dst

src

dst

Fig. 13. Statechart flattening

74 A. Kalnins, J. Barzdins, and E. Celms

5 Extended Patterns in MOLA

The rule in the previous example for computing the name of a state contained in a
composite state to be removed actually is the simplest case of a typical transformation
paradigm – the transitive closure. Experiments show that transitive closure in all cases
can be implemented in MOLA. However, not always it is so straightforward as in
Fig. 13, sometimes temporary associations and attributes and nested loops are re-
quired for this task. A typical example is the class to database transformation as speci-
fied in [3, 6], where the “flattening” of class-typed attributes must be performed – if
the type of an attribute is a class, the attributes of this class must be processed and so
on. If an attribute with a primitive data type is found in this process, a column with
this type is added to the table corresponding to the original (“root”) class. The name
of the column is the concatenation of all attribute names along the path from the root
class to the attribute. It is easy to see that all such paths must be traversed.

Since the transitive closure is a typical paradigm in MDA-related tasks, an exten-
sion of MOLA has been developed for a natural description of this and similar tasks.
This extension uses a more powerful – the looping pattern, by which computation of
any transitive closure can be implemented in one rule. This feature has been described
in details in [12], here we present only the above-mentioned example with some
comments.

Fig.14 shows one statement in extended MOLA which is both a FOREACH loop
over Class instances and a rule with an extended pattern. In contrast to patterns in
basic MOLA, this pattern matches to unlimited number of instances in the source
model. Most of the associations in this pattern are directed (using the UML navigabil-
ity mark). The semantics of this pattern is best to be understood in a procedural way.
Starting from a valid instance of loop variable (selected by the undirected part of the
pattern – one association), a temporary instance tree is being built, following the
directed associations.

a2.type.oclIsTypeOf(
PrimitiveDataType)

a:Attribute
?prefix :=cl.?prefix+name+'-'

t:PrimitiveDataType

tb:Tablecl:Class
?prefix :="c-"

a2:Attribute
?prefix :=c2.?prefix+name

c2:Class
?prefix := PRED.?prefix

col:Column
name := a2.?prefix
type :=t.name

:SQLDataType
{name=t.name}

type
{OPT}

type

#tableForCl

 feature {ALL}

#colForAttr

 1

 1

 table

 column

type
 feature {ALL}

type {OPT}

Fig. 14. Transitive closure by extended pattern

 Model Transformation Language MOLA 75

Associations in this pattern use two new qualifiers – ALL and OPT. The first one
says the instance tree has to contain all possible valid links of this kind (a fan-out oc-
curs), but the second one – that the link is not mandatory for the source instance to be
included in the tree (an association without qualifier is mandatory in MOLA). The
white square icons in c2 and a2 specify that for these pattern elements instance copies
are built in the tree (but not the original source model instances used) – it is easy to
see that in order to obtain all paths from the root class to primitively-typed attributes
namely such copying is required. Another new pattern syntax element is the UML
multiobject notation for some elements – to emphasize that a fan-out occurs at these
places during the pattern match. The looping part of the pattern – the elements c2 and
a2 actually are traversed as many times during the matching (tree building) process as
there are valid candidates in the source model. The rule uses the temporary attribute
?prefix (with the type String), whose scope is only this rule. The values of this attrib-
ute are computed during the building of the match tree (for each of its node) – it is
easy to see that the expressions follow the building process (the special PRED quali-
fier means any predecessor). For this extended pattern the building action also gener-
ates many instances of Column – one for each instance of a2 in the tree (it is a copy!)
which satisfies the building condition in OCL.

Extended patterns have more applications, however their strength most clearly ap-
pears on complicated transitive closures like the one in Fig. 14.

6 Conclusions

MOLA has been tested on most of MDA-related examples – besides the ones in the
paper, the class to Enterprise Java transformation from [10], the complete UML state-
chart flattening, business process to BPEL transformation and others. In all cases, a
natural representation of the informal algorithms has been achieved, using mainly the
MOLA loop feature. This provides convincing arguments for a practical functional
completeness of the language for various model to model transformations in MDA
area. Though it depends on readers’ mindset, the “structured flowchart” style in
MOLA seems to be more readable and also frequently more compact than the pure
recursive style used e.g., in [6]. Though recursive calls are supported in MOLA, this
is not the intended style in this language. For some more complicated transformation
steps the extended MOLA patterns briefly sketched in section 5 fit in well.

The implementation of MOLA in a model transformation tool also seems not to be
difficult. The patterns in basic MOLA are quite simple and don’t require sophisticated
matching algorithms. Due to the structured procedural style the implementation is
expected to be quite efficient. All this makes MOLA a good candidate for practically
usable model transformation language.

Initial experiments with MOLA have been performed by means of the modeling
tool GRADE [13, 14], in the development of which authors have participated. A sepa-
rate MOLA tool is currently in development. A graphical editor for MOLA has al-
ready been developed, the pictures for this paper have been obtained by this editor. A
MOLA execution system is also close to completion.

76 A. Kalnins, J. Barzdins, and E. Celms

References

1. OMG: Request For Proposal: MOF 2.0/QVT. OMG Document ad/2002-04-10,
http://www.omg.org/cgi-bin/doc?ad/2002-04-10

2. Bettin J. Ideas for a Concrete Visual Syntax for Model-to-Model Transformations. Pro-
ceedings of the 18th International Conference, OOPSLA’2003, Workshop on Generative
Techniques in the context of Model Driven Architecture, Anaheim, California, USA, Oc-
tober 2003.

3. QVT-Merge Group. MOF 2.0 Query/Views/Transformations RFP, Revised submission,
version 1.0. OMG Document ad/2004-04-01, http://www.omg.org/cgi-bin/doc?ad/2004-
04-01

4. Compuware, SUN. MOF 2.0 Query/Views/Transformations RFP, Revised Submission.
OMG Document ad/2003-08-07, http://www.omg.org/cgi-bin/doc?ad/2003-08-07

5. Interactive Objects Software GmbH, Project Technology, Inc. MOF 2.0
Query/Views/Transformations RFP, Revised Submission. OMG Document ad/2003-08-
11, http://www.omg.org/cgi-bin/doc?ad/2003-08-11

6. Willink E.D. A concrete UML-based graphical transformation syntax - The UML to
RDBMS example in UMLX. Workshop on Metamodelling for MDA, University of York,
England, 24-25 November 2003.

7. Agrawal A., Karsai G, Shi F. Graph Transformations on Domain-Specific Models. Tech-
nical report, Institute for Software Integrated Systems, Vanderbilt University, ISIS-03-403,
November 2003.

8. Czarnecki K., Helsen S. Classification of Model Transformation Approaches. Proceedings
of the 18th International Conference, OOPSLA’2003, Workshop on Generative Tech-
niques in the context of Model Driven Architecture, Anaheim, California, USA, October
2003.

9. Bardohl R., Minas M., Schürr A., Taentzer G.: Application of Graph Transformation to
Visual Languages. G. Rozenberg (ed.): Handbook on Graph Grammars: Applications, Vol.
2, Singapore, World Scientific, 1998.

10. Kleppe A., Warmer J., Bast W. MDA Explained. The model driven architecture: practice
and promise. Addison-Wesley, 2003.

11. Harel D. Statecharts: a Visual Formalism for Complex Systems. Sci. Comput. Program.
Vol 8, pp. 231-274, 1987.

12. Kalnins A., Barzdins J., Celms E. Model Transformation Language MOLA: Extended Pat-
terns. To be published in proceedings of Baltic DB&IS 2004, Riga, Latvia, June 2004.

13. Kalnins A., Barzdins J., et al. Business Modeling Language GRAPES-BM and Related
CASE Tools. Proceedings of Baltic DB&IS'96, Institute of Cybernetics, Tallinn, 1996.

14. GRADE tools. http://www.gradetools.com
15. Bézivin J., Dupé G., Jouault F., et al. First experiments with the ATL model transforma-

tion language: Transforming XSLT into XQuery. 2nd OOPSLA Workshop on Generative
Techniques in Context of MDA, Anaheim, California, 2003.

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 77 – 92, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Graphical Notation to Specify Model Queries
for MDA Transformations on UML Models

Dominik Stein, Stefan Hanenberg, and Rainer Unland

University of Duisburg-Essen, Essen, Germany
{dstein, shanenbe, unlandR}@cs.uni-essen.de

Abstract. Specifying queries on models is a prerequisite to model
transformations in the MDA because queries select the model elements that are
the source of transformations. Current responses to OMG's MOF 2.0 QVT RFP
mostly propose to use (and/or extend) OCL 2.0 as specification language for
queries. In this paper, we demonstrate that using textual notations (like OCL)
quickly leads to complex query statements even for simple queries. In order to
overcome this handicap, we present a graphical notation based on the UML that
facilitates comprehension of query statements as well as estimation of the
(ultimately) selected model elements. We advocate that queries should be
specified in terms of user model entities and user model properties (rather than
meta model entities and meta model properties) for the sake of feasibility and
comprehensibility to the user.

1 Introduction

Model-Driven Architecture (MDA) [16] aims to assist the development process of
software intensive systems by providing a standardized framework for the
specification of software artifacts and integration directives. Its key idea is to install
traceable relationships between software artifacts of different domains or different
development phases. In that way, the MDA aims to improve software quality since
software developers can directly relate the final program code to design decisions
and/or requirement specifications of the early phases of software development. It
allows them to validate and test the final code for compliance to particular
requirements, thus making maintenance much simpler. Further, the MDA promotes
reuse of existing system solutions in new application domains by means of conceptual
mappings and artifact integration.

The principal software artifact of consideration in the MDA are machine-readable
models. The underlying technique of the MDA is model transformation.
Transformations are accomplished according to the tracing and mapping relationships
established between the software artifacts (i.e., between their models).

Striving for a standardized language to define such model transformations, the
OMG released the "MOF 2.0 Query / Views / Transformation (QVT)" Request For
Proposal (RFP) in April 2002 [17]. It has been one of the mandatory requirements to
come up with a query language to select and filter elements from models, which then
can be used as sources for transformations. In response to the RFP, several proposals
for general-purpose model transformation languages have been submitted (e.g., [1],

78 D. Stein, S. Hanenberg, and R. Unland

[5], [9], and [20]). Most of them propose to use (and/or extend) the Object Constraint
Language (OCL) 2.0 [18] as query language (e.g., [9] [20] [1]). Having said so, only
one proposition [20] provides a graphical representation for its query language.

We think, though, that a graphical notation to specify and visualize model queries is
inevitable for the MDA to drive for success. We think that software developers require
a graphical representation of their selection queries, which they can use to
communicate their ideas to colleagues, or to document design decisions for maintainers
and administrators. A graphical visualization would facilitate their comprehension on
where a transformation actually modifies their models. We think that using a textual
notation (like OCL), instead, would quickly turn out to lead to very complex
expressions even when defining a relatively small number of selection criteria.

In this paper we present a graphical notation to specify selection queries on models
specified in the Unified Modeling Language (UML) [19], aiming to overcome the
lack of most of the RFP responses when working in a UML model context. We
introduce several abstraction means in order to express various selection criteria, and
specify how such selection criteria are evaluated by OCL expressions. Query models
built from such abstraction means are called "Join Point Designation Diagrams" [26]
(or "JPDD" in short). JPDDs originate in our work on Aspect-Oriented Software
Development (AOSD) [7] in general, and on the visualization of aspect-oriented
concepts in particular. They are concerned with the selection of points in software
artifacts that are target to modifications (so-called "join points" in AOSD). They
extend the UML with selection semantics. And they make use of, and partially
extend, UML's conventional modeling means.

This paper is an immediate follow-up paper of our submission [24] to the "MDA
Foundation and Application" workshop [3]. We carefully revised that submission
taking into account the comments and remarks that we received at the workshop.
Meanwhile, JPDDs have also been presented in [26]. While there we have identified
the general need to specify queries on software artifacts as a new evolving design
issue, here we concentrate on the integration of JPDDs into the MDA context. In
particular, we describe a generic mechanism to map JPDDs onto OCL statements,
thus giving way to the integration of our approach with the current QVT submissions.

The remainder of this paper is structured as follows: In the first section we
emphasize the need of a graphical notation to specify selection queries with the help of
an example. After that, we briefly sketch the background that JPDDs originate from,
and point to the parallels of query specification in AOSD and MDA. In section 4, we
briefly describe the abstract syntax of our notation. We then present the graphical
means as well as the OCL expressions by which they are evaluated. We conclude the
paper with relation to other work and a summary.

2 Motivation

In order to make the motivation of this work more clear, we take a look at a
hypothetical, yet easy-to-understand example (adopted from [20]): Imagine, for some
arbitrary model transformation, we need a model query that selects all classes with
name "cn" that either have an attribute named "an", or – in case not – that have an

 A Graphical Notation to Specify Model Queries 79

association to some other class with name "cn1" which in turn has an attribute named
"an". Fig. 1, right part, demonstrates how such query would be expressed using the
textual and graphical notation as proposed in [20]. Fig. 1, left part, shows the same
query, once expressed as an OCL statement, and once expressed as a JPDD.

As you can learn from the example, even a simple model query quickly results in a
complex query expression – when using a textual notation (cf. Fig. 1, top part). As a
result, comprehension of the query and estimation what model elements finally will
be selected is rather difficult. The graphical notation shown in Fig. 1, bottom right
part, helps to keep track of what is going on in the selection query. However, since the
query is specified in terms of meta model entities and meta model properties,
unnecessary and distracting noise is added to the diagram: A simple association
between classes "c" and "c1" is represented by three distinct entities.

Fig. 1, bottom left part, shows what the query looks like using a JPDD. JPDDs
represent model queries in terms of user model entities and user model properties.
Using user model entities and user model properties for query specification (rather
than meta model entities and meta model properties) is to the advantage of feasibility
and comprehensibility: Software developers work with abstraction means they are
familiar with. They do not need to bother about meta models. Further, query models
turn out to be concise and comprehensible: They specify a minimal pattern to which
all ultimately selected model elements must comply.

someUmlModel.contents
->select(c: Class |
 (c.name='cn' and
 c.allAttributes->exists(att | att.name='an'))
or (c.name='cn' and not
 c.allAttributes->exists(att | att.name='an') and
 c.oppositeAssociationEnds->exists(ae |
 let c1 : Class = ae.participant in
 c1.name='cn1' and
 c1.allAttributes->exists(att | att.name='an')
)))

(UML.Class, c) [name = "cn", feature =
 { (UML.Attribute) [name="an"] }]
or
(UML.Class, c) [name = "cn", feature =
 { not (UML.Attribute) [name="an"] }] and
(UML.Class, c1) [name = "cn1", feature =
 { (UML.Attribute) [name="an"] }] and
(UML.Association) [connection =
 { (UML.AssociationEnd) [participant = c],
 (UML.AssociationEnd) [participant = c1] }]

{or}

mda_query

 ?c
 ?att

<?c>cn

<?att>an
 Operations

 Attributes

<?c1>cn1

<?att>an
 Operations

 Attributes

<?c>cn

{not} <?att>an
 Operations

 Attributes

c: Class
name="cn"

att: Attribute
name="an"

{or}

AssociationEnd

AssociationEnd

Association

c: Class
name="cn"

c1: Class
name="cn1"

att: Attribute
name="an"

Attribute
name="an"

Fig. 1. Selection query expressed in OCL (top left part), using the textual and graphical
notation presented in [20] (right part), and with help of a JPDD (bottom left part)

80 D. Stein, S. Hanenberg, and R. Unland

3 Background

JPDDs originate in our work on AOSD. AOSD deals with the encapsulation of
crosscutting concerns into separate modular units, called aspects. A crosscutting
concern is a concern that cannot be cleanly decomposed to the primary decomposition
of a program, thus leading to crosscutting code that is scattered throughout every
module of the dominant decomposition. This is what became known as the Tyranny of
the Dominant Decomposition [28]. An aspect encapsulates the crosscutting code of a
crosscutting concern. Besides specifying the crosscutting code that should be injected
into the primary decomposition, an aspect also specifies the conditions under which
the injection shall take place.

In order to do so, aspect-oriented programming techniques rely on the concepts of
join points and weaving. Join points designate loci (in program code) or instants (in
program execution) at which injection takes place. Weaving defines the exact manner
in which injection takes place. Since crosscutting usually takes place at more than one
join point (in fact, this is the major case that AOSD is focused on), aspect-oriented
programming techniques provide various ways to specify selections of join points.
For example, join point selection is possible based on lexical similarities of join point
properties [14] [15] (e.g., of their name or type declarations), based on the structural
arrangement the join points reside in [8] (such as the presence of particular parameters
in an operation's parameter list, or the existence of a navigable path to a particular
class), or based on the dynamic context join points occur in [15] (e.g., in the scope of
a particular object, or in the control flow of a particular method).

We see strong parallels between AOSD and MDA with respect to the selection of
locations in software artifacts that are focus of modification. We estimate (e.g., from
the examples given in [20]) that selection in MDA also depends on lexical similarities
of model element properties – in particular, of their names. Further, structural
arrangements, such as the existence of certain features or relationships, are deemed to
play a major role in model element selection, as well. Structural constraints may also
involve general statements on navigable paths, i.e., indirect associations or indirect
generalizations between classifiers.

In the following, we explain the graphical elements that we provide to specify
model element selections based on lexical similarities and structural arrangements
with JPDDs. We briefly sketch their general syntax, and detail their semantic
implications using OCL expressions.

4 Notation and Semantics

A JPDD consists of at least one selection criterion, some of which delineate selection
parameters. A JPDD represents a selection criterion itself and thus may be contained
in another JPDD (e.g., for reuse of criteria specifications). JPDDs can be fully
integrated into the UML, making use of UML's modeling means and its meta model:
Structurally, JPDDs compare to UML templates of UML namespaces (cf. Fig. 2).
Note, though, that semantically JPDDs differ from conventional UML templates since
they render a "selection pattern" rather than a "generation pattern". This means in
particular that the parameters of JPDDs represent logical variables (which return

 A Graphical Notation to Specify Model Queries 81

values), while the parameters of a conventional UML template are fed with values. To
emphasize this difference in meaning visually, parameters of JPDDs are summarized
at the lower right corner of JPDDs – rather than at their upper right corner as with
conventional UML templates (see Fig. 4 in section 5 for an example).

In the following we present the core modeling means that may be used to specify
selection queries with help of JPDDs. We explain their graphical notation, and
describe how they can be evaluated using OCL meta operations1. Such meta
operations are appended to UML's meta model classes (e.g., to classifiers, attributes,
operations, associations, messages, etc.). Note that not all meta operations are shown
due to space limitations. At last, we sketch how the meta operations are deployed in
order to retrieve an actual set of matching model elements.

4.1 Classifier Selection

Looking at the selection semantics for classifiers, we may learn about the general
selection mechanism for all model elements: Principally, model elements are selected
based on the values of their meta attributes. In case of classifiers, these are the
properties "isAbstract", "isLeaf", and "isRoot" (see Table 1, block II).

Besides that, model elements are selected based on their meta relationships to
composite model elements. In case of classifiers, for example, special regards must be
given to the features they must possess in order to be selected (see Table 1, block III).

At last, note that name matching of model elements is accomplished with help of
name patterns (see Table 1, block I). Name patterns may contain wildcards, e.g. "*",
in order to select groups of model elements based on lexical similarities. All element
names in a JPDD represent name patterns by default. In case an element needs to be
referenced within the JPDD (e.g., if it needs to be defined as a JPDD parameter), the
element may be given an identifier2. In diagrams, identifiers are enclosed into angle
brackets and are prepended by a question mark (see "<?C>Con*" in Table 1 for
example, or "<?c>cn", "<?c1>cn1", and "<?att>an" in Fig. 1 of section 2). They are
placed in front of the element they refer to.

1 We used OCL Checker, version 0.3 (http://www.klasse.nl/ocl/ocl-checker.html), to write the

OCL statements, and OCLE, version 2.02 (http://lci.cs.ubbcluj.ro/ocle), to typecheck them.
2 In that case, the name pattern is stored (technically) in a special tagged value.

Namespace

Classifier Collaboration

ModelElement

namespace

ownedElement

template

templateParameter

Package

TemplateParameter

JPDD

SelectionCriterium

1..*
1..*

SelectionParameter

Fig. 2. Abstract syntax of JPDDs (top part) mapped to UML's meta model (bottom part) (cf.26)

82 D. Stein, S. Hanenberg, and R. Unland

Having explained these general selection principles, we concentrate on discussing
the particularities of other modeling means in the following.

Table 1. OCL meta operation for matching classifiers (left part), and a sample class pattern that
could be passed as an argument (right part)

context Classifier::
matchesClassifier(C : Classifier) : Boolean
post: result = -- I. evaluate name pattern
if [...] -- given an identifier(see footnote 2)
 self.matchesNamePattern(C.taggedValue->[...])
else -- default
 self.matchesNamePattern(C.name)
endif
 -- II. evaluate defined meta properties
and (self.isRoot = C.isRoot or C.isRoot = '')
and (self.isLeaf = C.isLeaf or C.isLeaf = '')
and (self.isAbstract = C.isAbstract or C.isAbstract = '')
 -- III. evaluate attributes and operations
and (C.allAttributes->forAll(ATT | self.possessesMatchingAttribute(ATT))
 or C.allAttributes->size() = 0)
and (C.allOperations->forAll(OP | self.possessesMatchingOperation(OP))
 or C.allOperations->size() = 0)

A sample class
pattern, which is
given an identifier
(?C):

 <?C>Con*

att2 : Integer [2!..100]

set*(val : *)
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

Operations

Attributes

name pattern

expected features

identifier

4.2 Operation Selection

Special regards in operation selection must be given to the usage of wildcard ".." in
the operation's signature pattern. Wildcard ".." provides for the selection of operations
based on their structural arrangement – that is, based on the existence of particular
parameters, while others are disregarded.

Table 2 gives a detailed description on how such structural arrangements are
evaluated by means of an OCL expression: Meta operation "matchesParameterList"
compares (a) the overall order of parameters in the actual operation("self")'s
parameter list to the one being passed from the JPDD (Table 2, block I), as well as (b)
the partial order of parameters at the parameter lists' beginnings (Table 2, block II)
and their ends (Table 2, block III). For that purpose, the meta operation defines a
couple of sub-expressions: "ownPars" comprises all parameters of the actual
operation ("self"); "patternPars" holds the parameters being passed from the JPDD,
neglecting all wildcarded parameters ".."; and "matchingPars" is a subset of
"ownPars", containing only those parameters that have a matching counterpart in
"patternPars".

The sub-expressions are used to compare the overall order of parameter lists with
help of meta operation "matchesParameterOrder" (not shown here). That operation
recursively iterates over "matchingPars" and "patternPars", verifying if (subsequences
of) the former contains all the elements belonging to (subsequences of) the latter. The
partial order is evaluated based on "ownPars" and the parameter list being passed
from the JPDD. Order evaluation stops (i.e., is always true) when the first wildcarded
parameter ".." is reached in the parameter list passed from the JPDD (see collect
statement at end of block II and III).

 A Graphical Notation to Specify Model Queries 83

Table 2. OCL meta operation for matching parameter lists (left part), and a sample signature
pattern whose parameter list could be passed as an argument (right part)

context Operation def:
let ownPars : Sequence(Parameter) = self.parameter->asSequence()
let patternPars(par : Sequence(Parameter)) : Sequence(Parameter)
 = par->reject(p | p.name = '..')
let matchingPars(par : Sequence(Parameter)) : Sequence(Parameter)
 = ownPars->select(p |
 patternPars(par)->exists(parp | p.matchesParameter(parp)))

context Operation def:
let matchesParameterList(par : Sequence(Parameter)) : Boolean
post: result = -- I. compare parameter order
 matchesParameterOrder(matchingPars(par), patternPars(par))
 -- II. compare first parameters
and Sequence{1..ownPars->size()}->forAll(i : Integer | ownPars->at(i)
 .matchesParameter(par->at(i))
 or Sequence{1..par->size()}->collect(j : Integer | j <= i
 and par->at(j).name = '..')->size() <> 0)
 -- III. compare last parameters
and Sequence{1..ownPars->size()}->forAll(i : Integer | ownPars->at(
 ownPars->size() - i)
 .matchesParameter(par->at(par->size() - i))
 or Sequence{1..par->size()}->collect(j : Integer | j <= i
 and par->at(par->size() - j).name = '..')->size() <> 0)

A sample signature
pattern (run),
providing a sample
parameter list
({val1 : Integer, ..,
 vali : Real, ..,
 valn : String}):

<?C>Con*

set*(val : *)
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

Operations

Attributes

signature patterns

name pattern

Table 3. Sample relationship patterns for (indirect) relationships, which could be passed to a
meta operation as an argument (meta operations are omitted here; see [26] for further details)

C

B

[*]

indirect association

C

B

A

association name

[*]

C

B

indirect generalization

C

B

4.3 Relationship Selection

When selecting relationships, special regards must be given to indirect relationships.
Indirect relationships are a sophisticated means to constrain structural arrangements:
Indirect relationships may be used in JPDDs to indicate that a classifier does not need
to be directly connected to a particular parent, child, or associated classifier. This
means in case of associations, that the particular classifier must be reachable via the
designated association, but does not need to be a direct neighbor.

In diagrams, indirect relationships are rendered by a double-crossed line3. Table 3
(left part) states, for example, that there must be a navigable path from class "C" to

3 Technically, indirect relationships are rendered by a special stereotype for associations or

generalizations, respectively. Query evaluation is based on the (non-)presence of that
stereotype (cf. [26]).

84 D. Stein, S. Hanenberg, and R. Unland

Table 4. OCL meta operation for matching association ends (left part), and a sample
association end pattern that could be passed as an argument (right part)

context AssociationEnd::
matchesAssociationEnd(ae : AssociationEnd) : Boolean
post: result = [...]
and ((if [...] -- exact limit -- evaluate multiplicity
 self.multiplicity.range.lower = ae.multiplicity.range.lower
 else -- minimum bound
 self.multiplicity.range.lower >= ae.multiplicity.range.lower
 endif
and if [...] -- exact limit
 self.multiplicity.range.upper = ae.multiplicity.range.upper
 else -- maximum bound
 self.multiplicity.range.upper <= ae.multiplicity.range.upper
 endif)
or ae.multiplicity = '')

A sample
association pattern
(A), comprising a
sample association
end pattern
(aRole):

exact multiplicity
restriction

C

B

A

2!..100

multiplicity
range restriction

aRole

class "B" for the selection criterion to be fulfilled. The ends of that path must match
with the association ends of the indirect association. In case of indirect
generalizations, the particular parent or child needs to reside somewhere in the
inheritance tree, but does not need to be a direct parent or child. For example, class
"C" in Table 3 (right part) must be among the ancestors of class "B", and class "B"
must be among the descendants of class "C", for the selection criterion to be satisfied.
The respective OCL meta operations are omitted here due to space limitations. Please
refer to [26] for a detailed description.

4.4 Multiplicity Restrictions

Special attention in association end selection must be paid to the association end's
multiplicity specification4: Multiplicity of an association end may declare exact upper
and/or lower limits; or it may designate the upper and/or lower bounds which the
multiplicity of an association end must not exceed or underrun (respectively). Being
able to declare exact limits and/or minimal and maximal bounds provides for further
flexibility in query specification based on structural arrangements.

Graphically, exact multiplicity bounds are indicated by exclamation marks5. The
lower multiplicity limit of association end "aRole" in Table 4, for example, denotes a
strict limit. Accordingly, association ends are only selected, if their lower multiplicity
limit equates "2". The upper multiplicity limit of "aRole", on the contrary, denotes a
maximum. Association ends are selected as long as their upper multiplicity limit does
not exceed "100".

4.5 Message Selection

Selection is not restrained to structural aspects of a UML model as they are specified
in UML class diagrams, for example. Selection criteria may as well involve behav-

4 The same counts for the multiplicity specification of attributes (see sample classifier pattern in

Table 1 for an example).
5 Technically, fix upper and lower limits are specified as stereotypes of multiplicity ranges.

 A Graphical Notation to Specify Model Queries 85

ioral requirements as they are specified in UML interaction and collaboration dia-
grams. Table 5 shows the notational means to specify selection criteria on messages,
and how such criteria are evaluated by an OCL operation.

Messages are selected based on the action they invoke (Table 5, block I). In case of
operation call actions, signature patterns may be used to restrict the operation called.
Further, messages are selected based on their senders and receivers (Table 5, block
II). It is important to note that the OCL operation evaluates the senders' and receivers'
base classifiers rather than their role specifications. This is accomplished deeming
that selections should consider the full specification of classifiers rather than restricted
projections thereof. The same counts for the associations used for transmitting the
messages.

Lastly, messages may be selected based on their activator message, their
predecessor and successor messages, as well as based on the messages they are
activating themselves (Table 5, block III and IV). This is particularly useful to
constrain the (preceding) control flow in which selected messages may occur, as well
as the (succeeding) control flow that selected messages may invoke. Message
"someOp" in Table 5, for example, must be activated in the control flow of message
"op1", and must in turn invoke message "op2".

Table 5. OCL meta operation for matching (indirect) messages (left part), and a sample
message pattern that could be used as an argument (right part)

context Message::
matchesMessage(m : Message) : Boolean
post: result = -- I. evaluate action
self.action.matchesAction(m.action)
 -- II. evaluate sender/receiver/...
and self.sender.base->exists(C |
 C.matchesRelationships(m.sender) and
 C.matchesClassifier(m.sender))
and self.receiver.base->exists(C |
 C.matchesRelationships(m.receiver) and
 C.matchesClassifier(m.receiver))
and self.communicationConnection.base
 .matchesAssociation(m.communicationConnection)

A sample message
pattern (someOp*),
and an "indirect"
message symbol:

someOp*(..)
op1()

C B

activating control flow

signature pattern

activated control flow

op2()

 -- III. evaluate activator
and ((if m.activator.stereotype->exists(st | st.name='indirect') then
 self.activator.matchesReceptionContext(m.activator) and
 self.allActivators->exists(M | M.matchesSendingContext(m.activator))
 else
 self.activator.matches(m.activator)
 endif) or m.activator='')
 -- IV. evaluate predecessors/successors/...
and (m.predecessor->forAll(p |
 if p.stereotype->exists(st | st.name='indirect') then
 self.predecessor->exists(P |
 P.matchesSendingContext(p) and
 P.allActivatedMessages->including(P)->exists(M |
 M.matchesReceptionContext(p)))
 else
 self.predecessor->exists(P | P.matches(p))
 endif) or m.predecessor->size()=0)
and (m.successor->forAll([...]) or m.successor->size()=0) -- analogously
and (m.activated->forAll([...]) or m.activated->size()=0) -- analogously

C

[...]

arbitrary control flow

86 D. Stein, S. Hanenberg, and R. Unland

Messages of special stereotype "indirect" can be used to indicate arbitrary control
flow that may occur between two successive messages. In diagrams, indirect
messages are depicted as double-crossed arrows. Technically, indirect relationships
are rendered as special message stereotypes. The presence of that stereotype is
checked during query evaluation (see Table 5, block III and IV, for illustration).
Evaluation of indirect messages is accomplished in two steps: One step is concerned
with finding messages that comply to the sending context of the indirect message (i.e.
sender role, predecessors, successors, and activator messages); the other step deals
with the identification of messages matching to the reception context of the indirect
message (i.e. receiver role and subsequently activated messages).

4.6 Combination of Selection Criteria

By default, all selection criteria specified in a JPDD are implicitly combined with
"and". That is, all such selection criteria must be fulfilled by a given model element in
order to be selected by the query. In some cases, though, we may need to specify
alternative, exclusive, or mutual exclusive selection criteria. In order to render such
combinations of selection criteria, we may use constraint strings ("{or}", "{xor}", and
"{not}"). The corresponding OCL operations specify that either at least, or exactly,
one (respectively) of all model elements interrelated by such a constraint must comply
to the selection criteria; or it inverts the result of matching in case the model element
is constrained with "{not}". The OCL operations are omitted here due to space
limitations. Please refer to [24] for further illustrations.

4.7 Retrieving Matching Model Elements

Retrieval of actual model elements from user models is accomplished using the UML
meta model operations as they have been exemplified in the previous sections. A
corresponding meta operation is specified for each UML meta model element (whose
instances may appear in class/object diagrams or in interaction diagrams, e.g.
classifiers, attributes, operations, associations, messages, etc.). In order to retrieve a
set of (matching) model elements, the meta operation successively invoke one another
so that all selection criteria specified in the JPDD are evaluated (see Fig. 3). The meta
operations take a model element pattern from the JPDD as argument, and compare its
characteristics with an actual model element instance of a user model. Starting point
of evaluation is a return parameter of the JPDD. For each return parameter of a JPDD,
a set of matching elements in the given user model is retrieved.

Fig. 3 exemplifies how the OCL meta operations work together in order to retrieve
a set of matching model elements for a classifier pattern ("?cPattern"). The selection
is initiated by a special meta operation "matchingModelElements", which is defined
in the context of the JPDD parameter and that returns the set of all model elements
matching to that parameter (i.e. to classifier pattern "?cPattern"; see in Fig. 3). The
meta operation takes a UML model (or any other namespace, such as packages, col-
laborations, etc.) as an argument. The contents of that model (or namespace) are then
matched against the selection criteria outlined by the JPDD parameter (i.e. by classi-
fier pattern "?cPattern"), one by one (see in Fig. 3). The model elements contained

 A Graphical Notation to Specify Model Queries 87

someJPDD

 ?cPattern

<?cPattern>...

someModel

A
B

C
D

E

Flet cPattern = self.templateParameter in
context TemplateParameter::
matchingModelElements(someModel : Namespace) : Set(ModelElement)

someModel.allContents->select(everyModelElement | oclIsKindOf(Classifier) and ...

possessesMatchingAttribute
(∀ cPattern.attPatterns)

possessesMatchingOperation
(∀ cPattern.opPatterns)

possessesMatchingAssociation
(∀ cPattern.assocPatterns)

possessesMatchingParent
(∀ cPattern.parentPatterns)

matchesAssociationEnd
(∀ assocPattern.assocEndPatterns)

matchesClassifier
(parentPattern) and
matchesRelationships
(parentPattern)

matchesClassifier
(assocEndPattern.participantPattern) and
matchesRelationships
(assocEndPattern.participantPattern)

matchesParameterList
(opPattern.parlistPattern)

[...]

matchesClassifier(cPattern) matchesRelationships(cPattern)

matchesParameter
(∀ parlistPattern.parPatterns)

--(every attribute)
matchesAttribute
(attPattern)

post: result =

… and --(that) … and --(that)

… and --(that) … and --(that)

… and --(that)… and --(that)

… and

… and --(every operation) … and --(every assocation)

… and --(every parent)

… and --(every parameter) … and --(every participant)

Fig. 3. Cascading evaluation of JPDDs (note that not all evaluation steps are shown)

in the model are selected if their meta attributes (in this case, "isAbstract", "isLeaf",
"isRoot", etc.) as well as their meta relationships (to other model elements, such as
attributes, operations, associations, and generalizations, etc.) comply to the ones
defined by classifier pattern "?cPattern" (cf. also section 4.1). This is checked with
help of operations "matchesClassifier" and "matchesRelationships" (see in Fig. 3),
which in turn make use of operations "possessesMatchingAttribute", "possesses
MatchingOperation", "possessesMatchingAssociation", and "possessesMatching
Parent" (see in Fig. 3) – and so forth. It is important to note that relationship
matching also involves matching the participating classifiers (see in Fig. 3)6. That
way, evaluation cascades from selection criterion to selection criterion, assessing if all
selection criteria in the JPDD are fulfilled.

5 Example

With help of the notational means presented in the previous section, we now can
define even complex selection queries without getting lost in its specification.

6 Likewise, attribute and operation matching involves matching of their type and parameter

types, respectively (not shown in Fig. 3).

88 D. Stein, S. Hanenberg, and R. Unland

sample_model_query

 ?C
 ?Application
 ?someMsg

1!
Database

<?C>Con*

{not} att1 : String
att2 : Integer [2!..100]

set* (val : *)
put*(par : *)
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

 Operations

 Attributes
<?Application>*

att1 : String

<?someOp>do* (..)

 Operations

 Attributes

{xor}

Collection Array

[*] [*] {not}

[*]

run(..)

<?Application>* <?C>Con*

[]

<?someMsg> :
<?someOp>do* (..)

*

Fig. 4. A sample JPDD

Fig. 4, for example, depicts a sample JPDD that selects all classifiers (identified
with "?C") (1) matching the name pattern "Con*"; (2) that do not have an attribute
matching "att1" of type "String"; (3) that do have an array attribute matching "att2" of
type "Integer" whose lower bound equates "2", and whose upper bound does not
exceed "100"; (4) that either have an operation matching "set*", or an operation
matching "put*" (but not both) that both take one parameter of arbitrary type; (5) that
have an operation matching "get*" that returns an value of arbitrary type; (6) that
have an operation matching "run" that takes (at least) three parameters: (6a) the first
parameter in the operation's parameter list must be of type "Integer", (6b) the last
parameter must be of type "String"; (6c) besides that, the operation must take a third
parameter of type "Real" (no matter at which position in the operation's parameter
list). Selected classifiers must be (7) subtypes of "Collection"; (8) but not subtypes of
"Array"; and (9) they have to have an association to exactly one classifier matching
"Database".

Furthermore, selected classifiers must possess an indirect association (i.e., a
navigable path) to a classifier (identified with "?Application") (1) matching "*"; (2)
that has an attribute matching "att1" of type "String"; (3) and that has an operation
matching "do*" (identified with "?someOp"), which takes any number of
parameters. That operation must be invoked by some message (identified with
"?someMsg"7) (3a) which in turn invokes method "run" on the former classifier
(identified with "?C") – (3b) no matter when (see "iterating" double-crossed
message in right part of Fig. 4) – and (3c) using arbitrary values as parameters.
While the left part of Fig. 4 is matched against classifiers in class diagrams, the
right part is compared to message specifications in interaction diagrams in which
matching classifiers are involved.

Having found actual model elements that comply to these selection criteria, the
JPDD returns the resulting model elements via its template parameters "?C",
"?Application", and "?someMsg".

7 Note how the identifier of the message is separated from the identifier of the operation (which

is being called) by means of a colon.

 A Graphical Notation to Specify Model Queries 89

6 Related Work

MDA is closely related to the research field of graph transformations [21]. In both
domains, we are concerned with the specification of model (or graph) transformations
and – consequently – with the specification of model (or graph) queries. From that
perspective, JPDDs compare to the left-hand side (LHS) of production rules as we
find them in graph rewrite systems such as PROGRES [23] or AGG [27]. JPDDs
differ from LHS specified in PROGRES in their way to specify constraints on
(class/object) node attributes. In PROGRES, such constraints are either specified
using textual descriptions, or they are attached to the (class/object) node which they
apply to by means of a hollow fat arrow. Both representations differ considerably
from the class/object notation as it is known from the UML. AGG does a better job in
that respect, since attributes are listed within a special attribute compartment inside
the node. On the other hand, though, AGG does not provide for the specification of
paths (e.g., indirect associations) between (class/object) nodes – such as PROGRES
and JPDDs do. The specification means of path expressions in PROGRES go beyond
those of JPDDs: PROGRES gives developers fine-grained control over the evaluation
process of path expressions (by providing conditional and iterative path expressions).
Furthermore, it permits the specification of optional nodes. Selection criteria specified
in JPDDs, on the contrary, must be satisfied as a whole; and their evaluation process
is invariable as determined by the OCL statements presented in this paper8.

Apart from the transformation approaches originating in the field of graph trans-
formations, there are a couple of notations around that are explicitly dedicated to the
field of MDA, e.g., the QVT approach presented in [20], or MOLA [10]. The major
problem with these transformation languages is that they specify model queries in
terms of meta model entities. While this may be more convenient when referring to
meta properties that have a standard representation in UML diagrams, it severely
hinders the overall comprehension of the queries. Apart form that, JPDDs facilitate
the reuse of model queries since they consider model queries as first-class entities9
which may be involved in multiple transformations.

Considering that most submissions to OMG's QVT RFP propose to use OCL as a
query language, JPDDs also relate to existing approaches for the visualization of OCL
expressions in general, such as Constraint Diagrams [11] or Visual OCL [4] [12].
Constraint Diagrams represent a graphical notation to specify invariants on objects
and their associations (i.e., links) depending on the state they are in. In consequence
to its strict focus on runtime constraints, the notation does not provide for the
specification of model element queries, though. In particular, no means are provided
to designate model elements that serve as sources for transformations. Further, the
notation is not concerned with the specification of structural selection constraints,
such as existence of particular features. Visual OCL is a graphical notation to express
OCL constraints. It provides graphical symbols for all OCL keywords, in particular
for the "select" statement as we need it for model element selection in MDA.

8 Note that we abstract from evaluation problems of OCL expressions, such as the calculation

of transitive closures (cf. [22]), for example. We consider these problems to be OCL-specific
rather than JPDD-specific.

9 i.e., as an autonomous entity that can exist without further reference to any other entities.

90 D. Stein, S. Hanenberg, and R. Unland

However, similar to the MDA transformation approaches mentioned above, Visual
OCL does not provide for the specification of model element queries in terms of user
model entities. In consequence, users are confronted with the full load of OCL
complexity – in particular when specification of indirect relationships (see section 4.3)
is necessary.

The idea of specifying queries in terms of user model entities we borrowed from
the approach of Query-By-Example (QBE) [30], which is a common query technique
in the database domain: We specify sample model entities, having sample properties,
and determine how selected model elements must relate to such samples. We make
use of "operator" symbols (such as wildcards, exclamation marks, and double-crossed
lines and arrows) to differentiate whether selected model elements must match the
samples exactly, or with a permissible degree of deviation (e.g., names may be
rendered with help of patterns, and/or multiplicity boundaries may be specified to
denote minimum and maximum values rather than perfect matches).

As already mentioned above and discussed in [26], AOSD is another application
area for JPDDs. Here, JPDD are used to visualize selections of join points, i.e., they
render those points in program code, or program execution, that are to be enhanced by
an aspect. In [25], we demonstrate by example how JPDDs may be used to model join
point selections in popular aspect-oriented programming languages. In particular, we
describe how JPDDs may be used to represent pointcuts in AspectJ [2], traversal
strategies in Adaptive Programming [13], or concern mappings in Hyper/J [29].

7 Conclusion

In this paper, we presented a graphical notation to specify model queries on UML
models. We identified model queries to be prerequisites to model transformations as
they are specified in the Model-Driven Architecture (MDA). We demonstrated that
even simple query specifications tend to become excessive and complex when using a
textual notation. Aiming to overcome this quandary, we introduced Join Point
Designation Diagrams (JPDD) to specify and represent model queries graphically. We
explained their abstract syntax, as well as the graphical means to specify the queries'
selection criteria. We specified OCL operations for the evaluation of such selection
criteria on actual user model elements. We exemplified the use of JPDDs using a
complex model query, demonstrating that even then the query specification remains
comprehensible.

The particular focus of this work has been on providing graphical means for the
specification of model element queries based on lexical similarity (e.g., based on
name and signature patterns) and structural arrangements (e.g., based on indirect
relationships). We extrapolated the need of such selection means from the area of
Aspect-Oriented Software Development (AOSD), where JPDDs were originally
developed for. We think that mapping our graphical means to OCL expressions can
assist developers in both AOSD and MDA when specifying and modeling selections.
In particular, this allows seamless integration of our JPDDs with various submissions
to the MOF QVT RFP, which are proposing to use OCL as a model query language. It
is important to note, though, that JPDDs are not capable – and not intended – to
represent OCL expressions in the general case. Further, it must be stated that JPDDs

 A Graphical Notation to Specify Model Queries 91

may specify only selections on model elements of a kind. It is not possible, for
example, to collectively select UML model elements of different types into the same
parameter (e.g., classes and associations, or all model elements contained in a model).
Instead, a parameter must be defined for each model element type to be selected.

We think, however, that this limitation is more than outranged by the benefits of
specifying model queries in terms of user models, rather than meta models, in order to
facilitate their specification and comprehension to the user. In this paper, we have
concentrated on a query language for the UML. We advocate for the development of
further user model-based query languages in other modeling and domain-specific
languages as well. That way, transformations may be specified as simple as relating
one user-model-based query to another user-model-based query – for the sake of
feasibility and comprehensibility to the user.

References

[1] Alcatel, Softeam, Thales, TNI-Valiosys, Codagen Technologies Corp, Revised
Submission for MOF 2.0 Query / Views / Transformations RFP, 18. Aug. 2003

[2] AspectJ Team, The AspectJ Programming Guide, http://dev.eclipse.org/viewcvs/
indextech.cgi/~checkout~/aspectj-home/doc/progguide/index.html, Jan. 2004

[3] Assmann, U. (ed.), Proc. of MDAFA 2004 (Linköping, Sweden, Jun. 2004),
http://www.ida.liu.se/~henla/mdafa2004

[4] Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G., A Visualization of OCL Using
Collaborations, in: Proc. of UML 2001 (Toronto, Canada, Oct. 2001), LNCS 2185, pp.
257-271

[5] CBOP, DSTC, IBM, Revised Submission for MOF 2.0 Query / Views / Transformations
RFP, 18. Aug. 2003 (http://www.dstc.edu.au/pegamento/publications/ad-03-08-03.pdf)

[6] Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook on Graph
Grammars, Vol. 2: Applications, Languages, and Tools, World Scientific, River Edge,
NJ, 1999

[7] Filman, R., Elrad, T., Clarke, S., Aksit, M., (eds.), Aspect-Oriented Software
Development, Addison-Wesley, 2005

[8] Gybels, K., Brichau, J., Arranging language features for more robust pattern-based
crosscuts, in: Proc. of AOSD'03 (Boston, MA, Mar. 2003), ACM, pp. 60-69

[9] Interactive Objects Software, Project Technology, Revised Submission for MOF 2.0
Query / Views / Transformations RFP, 18. Aug. 2003

[10] Kalnins, A., Barzdins, J., Celms, E., Model Transformation Language MOLA, in: [3], pp.
14-28

[11] Kent, S., Constraint Diagrams: Visualizing Assertions in Object-Oriented Models, in:
Proc. of OOPSLA 1997 (Atlanta, Georgia, Oct. 1997), ACM pp. 327-341

[12] Kiesner, Chr., Taentzer, G., Winkelmann, J., Visual OCL: A Visual Notation of the Object
Constraint Language, TR 2002/23, Technical University Berlin, 2002

[13] Lieberherr, K., Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns, PWS Publishing Company, Boston, 1996

[14] Lieberherr, K., Lorenz, D., Mezini, M., Programming with Aspectual Components, TR
NU-CCS-99-01, Northeastern University, 1999

[15] Masuhara, H., Kiczales, G., Dutchyn, Chr., A Compilation and Optimization Model for
Aspect-Oriented Programs, in: Proc. of CC 2003 (Warsaw, Poland, Apr. 2003), LNCS
2622, pp. 46-60

92 D. Stein, S. Hanenberg, and R. Unland

[16] OMG, MDA Guide Version 1.0, OMG, 1. May 2003 (omg/2003-05-01)
[17] OMG, Request for Proposal: MOF 2.0 Query / Views / Transformations RFP, 2002

(OMG Document ad/2002-04-10)
[18] OMG, UML 2.0 OCL Specification, Final Adopted Specification, 2003 (OMG Document

pct/03-10-14)
[19] OMG, Unified Modeling Language Specification, Version 1.5, March 2003 (OMG

Document: formal/03-03-01)
[20] QVT-Partners, Revised Submission for MOF 2.0 Query / Views / Transformations RFP,

18. August 2003 (http://qvtp.org/downloads/1.1/qvtpartners1.1.pdf)
[21] Rozenberg, G. (ed.), Handbook of Graph Grammars and Computing by Graph

Transformation, Vol. 1: Foundations, World Scientific Publishing, River Edge, NJ, 1997
[22] Schürr, A., Adding Graph Transformation Concepts to UML's Constraint Language OCL,

Electronic Notes in Theoretical Computer Science Vol. 44(4), Elsevier, 2001
[23] Schürr, A., Winter, A., Zündorf, A., PROGRES: Language and Environment, in: [6], pp.

487-550
[24] Stein, D., Hanenberg, St., Unland, R., A Graphical Notation to Specify Model Queries

for MDA Transformations on UML Models, in: [3], pp. 60-74
[25] Stein, D., Hanenberg, St., Unland, R., Modeling Pointcuts, Early Aspect Workshop,

AOSD '04 (Lancaster, UK, Mar. 2004)
[26] Stein, D., Hanenberg, St., Unland, R., Query Models, in: Proc. of UML 2004 (Lisbon,

Portugal, Oct. 2004), LNCS 3273, pp. 98-112
[27] Taentzer, G., Ermel, C., Rudolf, M., The AGG Approach: Language and Environment, in:

[6], pp. 551-603
[28] Tarr, P., Ossher, H., Harrison, W., Sutton Jr., St., N Degrees of Separation: Multi-

Dimensional Separation of Concerns, in: Proc. of ICSE 1999 (Los Angeles, CA, May
1999), ACM, pp. 107-119

[29] Tarr, P., Ossher, H., Hyper/J User and Installation Manual, IBM Corp., 2000
[30] Zloof, M., Query-by-Example: A Data Base Language, IBM Systems Journal, Vol. 16(4),

1977, pp. 324-343

Describing Horizontal Model Transformations
with Graph Rewriting Rules

Alexander Christoph

Forschungszentrum Informatik (FZI), Haid-und-Neu-Str. 10-14,
76131 Karlsruhe, Germany

Abstract. The software model development process consists of a number of
complex transformations. Especially horizontal model transformations that are
used to restructure and re-organize software models require a lot of handiwork,
since complex analysis and transformation steps have to be performed. The de-
veloper should be assisted by a tool set that supports horizontal as well as ver-
tical model transformations in order to improve software quality and to reduce
software development costs. This paper presents GREAT, a rule-based transfor-
mation framework which facilitates transformations among models on the same
or different abstraction levels. The feasibility of GREAT is shown by rule-based
implementations of model restructuring, refactoring, and optimization algorithms
that can be used throughout the development process to improve the architecture
of software models.

1 Introduction

The Model Driven Architecture (MDA) approach of the OMG aims at the automati-
zation of the software development process. It defines a range of abstraction levels for
software models and transformations, that translate models between different levels of
abstraction. Vertical model transformations affect the abstraction level of a software
specification. They are used to refine or to abstract a model during forward or reverse
engineering, respectively. Horizontal transformations however, do not affect the ab-
straction level of a software model. They are used to restructure, complete, or optimize
a software model in order to improve its internal structure and/or quality. In contrast to
vertical transformations, which are the main focus for research and tool development
in this area, horizontal transformations have only limited support. Horizontal transfor-
mations are often confined to the source code level of a system [1] and/or implemented
internally [2], which restricts adaptation and extension. In order to automate the overall
software development process, a model transformation system must be able to support
both vertical and horizontal model transformations. Also, the developer must be able
to create, extend and adapt transformation algorithms. This paper presents GREAT1

[3], a rule-based transformation framework, which facilitates transformations among
models on the same or different abstraction levels, i.e., horizontal or vertical transfor-
mations. Depending on the given set of transformation rules, GREAT can be used to

1 German “Graphorientiertes Entwurfsanalyse und Transformationswerkzeug”, English trans-
lation “Graph-oriented tool for design-analysis and transformation.”

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 93–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

94 A. Christoph

automate complex model transformation tasks, such as model analysis, refactorings, or
design pattern application. The applicability of GREAT is demonstrated with rule-based
implementations of refactoring and optimization algorithms that can be applied to ar-
bitrary software models. The next section presents an overview of GREAT. Section 3
introduces transformation rules that are used to analyse software models to support
further transformations. Section 4 presents rule-based implementations of architecture
refactorings for software models. Section 5 shows the implementation of an restruc-
turing algorithm that produces an optimal inheritance hierarchy for a set of classes.
Conclusions and related work are discussed in sections 7 and 6.

2 GREAT: A Model Transformation Framework

The GREAT model transformation framework facilitates UML model-to-model trans-
formations, focusing on UML class-diagrams. GREAT is designed to ease and automate
different software engineering tasks, such as refactoring and refinement; tasks that are
currently part of the MDA process [4,5].

2.1 System Architecture

Figure 1 shows the structure of the framework.

Fig. 1. The GREAT transformation framework

GREAT has three sources of input.

– The Software models are either UML models, which are assumed to be represented
in XMI [6] or MDL2, or Applications, which are assumed to be available in Java
byte code. The usage of XMI or MDL allows the integration of GREAT into an
existing tool chain, whereas byte-codes can be used for maintenance and reengi-
neering tasks [7].

– The model transformation rules. These graph transformation rules are processed by
OPTIMIX [8] which generates the appropriate Java-code. The Java output is used
by GREAT’s execution engine.

2 Proprietary file format of Rational Rose.

Describing Horizontal Model Transformations 95

– The flow control, which provides the order in which different rule sets have to be
applied.

The central part of GREAT is the implementation of the UML meta-model [9]. The
model manipulation interface (MMI) provides methods for accessing and manipulating
UML models. The execution engine is responsible for loading and executing the graph
transformation code generated by OPTIMIX. The GREAT framework is completely
implemented in Java.

2.2 Transformation Method

GREAT uses a declarative transformation approach. The specification of a model trans-
formation consists of a set of transformation rules together with a flow control descrip-
tion. The rules are translated into executable transformation code by the graph rewrite
system OPTIMIX. The transformation code is executed in the context of the meta-
model implementation of GREAT.

Graph Model
A software model can be defined as a set of graphs G = (N, E) with nodes N and edges
E. In the context of UML, graph nodes are of type {Class, Interface, Attribute,
Method, Unit}. Edges represent mappings (also: relations) between nodes. Relations
are of type {Generalization, Implementation, Association, Dependency,
Parent}.

Nodes and egdes contain additional information to further specify their semantics,
e.g. name, stereotype, visibility, etc. Element names must be unique with respect to the
context of the element. The relations Generalization, Implementation, and Parent
are unique between two nodes A and B by definition, whereas Association and De-
pendency edges must have a unique name.

Transformation Language
Basically, transformation rules consist of two sets of predicates over the GREAT meta-
model (see figure 2). The first set (above the ==> delimiter) describes a pattern to be

Fig. 2. Example transformation rule

96 A. Christoph

matched in the software model. The pattern is a conjunction of predicates over the
graph model. The second set describes the structure of the matched section, when the
manipulation is finished. OPTIMIX is used to generate the navigation and manipula-
tion code from these rule specifications. This code relies on the model manipulation
interface (MMI) of GREAT. The generated code is stored in a rule repository. The
GREAT execution engine loads and executes the generated rule code according to the
flow control specification. Figure 2 shows a transformation rule that identifies three
classes connected through stereotyped dependency edges3. The rule creates a new class
and connects it via a generalization edge with one of the pattern classes, i.e., it cre-
ates a new base class for the pattern class. The left-hand side of the figure shows the
textual representation of the rule. The right-hand side shows a graphical (UML-like)
representation. In order to ease understanding, the graphical representation will be used
throughout the paper.

3 Model Analysis

In order to implement complex transformation algorithms, model analysis can be used
to externalize implicit knowledge contained in model elements and/or relations. This
helps to keep model transformations simple and to achieve reuse of transformation steps
in the sense of modularization. This section presents transformations that implement
relational operations, e.g., transitive closure, to analyze element relationships. These
operations are also used to support element analysis. Analysis results are either stored
as dedicated model elements or as tagged values of existing model elements.

3.1 Analyzing Relations

Transitive Subgraph
Transitive closures can be used to analyse the subgraph spanned by a transitive relation
R. The following rules generate a transitive closure over the generalization relation of
a software model. Transitive edges are instantiated as dependency edges, stereotyped
with <<tc>>.

Rule 3.1(a) produces an initial state in the model by creating transitive edges par-
allel to generalization edges. Rule 3.1(b) iteratively extends the transitive closure by
including next neighbour nodes.

Rule 3.1: Creating a transitive closure
3 Dependency edges serve as templates for user-defined relations.

Describing Horizontal Model Transformations 97

The resulting transitive closure of the sample model is shown in model 3.1 (dotted
edges, <<tc>> omitted).

Relation Intersection
For a number of transformations it is necessary to know the set of common members
of a relation R, i.e., nodes that are contained in different branches of R. The following
rules identify common base classes of a given set Sub of classes iteratively.

Rule 3.2(a) generates the set of all base classes of classes in Sub. The elements of
Sub are marked with the stereotype <<Leaf>>. The (potential) base classes are marked
with <<BT>>.

Rule 3.2: Finding common base classes

Let Base be the set of potential base classes. Rule 3.2(b) identifies counter-
examples, i.e., tuples of classes (A, B) with A ∈ Sub, B ∈ Base, not connected
through a generalization edge. The rule removes B from Base, i.e., it removes its
stereotype.

In the sample model, the rules identify class Base as a common base class of Sub =
{Member, Relationship}.

Model 3.1: Common base class of {Member, Relationship}

Shortest Edge
Once we know the set of base classes Base of classes in Sub, we might be interested
in a subset Base′ ⊆ Base, that contains the nearest base classes of Sub. For this
purpose, we define the distance between (A, B), A ∈ Sub, B ∈ Base as the number
of generalization edges between A and B.

98 A. Christoph

Rule 3.3(a) identifies tuples (A, B, C), A ∈ Sub, B, C ∈ Base and adds a mark
to the shorter transitive edge. An edge can have multiple marks. Edges with a higher
number of marks are shorter than edges with a lower number of marks.

Rule 3.3(b) pairwise compares transitive edges and removes a class from Base that
is connected to the edge with the lower number of marks.

In the example, Entity is the nearest common base class for Sub = {Metaclass,
Relationship}.

3.2 Analyzing Model Elements

Feature classes are supporting model elements that are used to construct defining or
containing class sets for operations and attributes.

Rule 3.4(a) creates a feature class for every operation defined in a software model.
The classes are marked with <<feature class>>. Classes defining the operation are
connected via a Defines relation. This simple rule compares operation names only.

Rule 3.4(b) creates a Contains edge between class A and a feature class C, if
the base class B of A defines the operation. The rule uses the transitive closure of the
generalization relation to calculate the Contains relation.

In the sample model, the rules yield the following result for the operation
taggedValue.

Rule 3.3: Nearest common base class

Rule 3.4: Defines and Contains relations

Describing Horizontal Model Transformations 99

Model 3.2: Defines and Contains relations of taggedValue

4 Architecture Refactoring

In [10], Fowler describes a number of architectural refactorings that help to improve the
internal structure of a software model. This section presents rule-based implementations
of selected refactorings.

4.1 Extract Superclass

Extract Superclass identifies common features of a set of classes and moves them into
a common base class. The goal of this transformation is to avoid repeated feature
definitions.

Rule 4.1: Extract Superclass: initial rule (a), iteration rule (b), final transformation (c)

100 A. Christoph

Rule 4.1(a) uses feature classes to identify features that are defined by at least two
classes. For matching classes, the rule creates a common base class. Rule 4.1(b) itera-
tively connects all the remaining classes defining the common feature to the common
base class. A supporting <<base type>> edge connects the feature class with the new
base class. Finally, rule 4.1(c) moves the common feature into the base class and re-
moves its definition from the subclasses. It uses the <<base type>> relation created
by rule 4.1(a).

4.2 Pull Up Feature

Pull Up Feature is a variant of Extract Superclass. It uses analysis rules presented in
section 3.1 to identify an already existing common base class. In this case, the rules do
not create a new base class for the common feature.

Rules 4.2(a) and (b) identify classes containing a common feature. The classes are
stereotyped with <<Leaf>>. Rules 3.2(a) and (b) can then be used to find and stereotype
a common base class of the set of classes stereotyped with <<BT>>. Rule 4.2(c) moves
the common feature to the base class of the class set.

Rule 4.2: Pull Up Feature: initial rule (a), iterative rule (b), final transformation (c)

4.3 Extract Interface

Extract Interface creates an interface for a class, containg a subset of the class’ methods.
This is useful when client access must be restricted to a certain subset of methods, e.g.
to avoid subclasses of clients to access other parts of the subject.

Rule 4.3(a) creates an interface for a class containg methods stereotyped as
<<facade>>. The interface is equipped with these methods and connected to the class
via an implementation edge. Rule 4.3(b) uses call edges to identify direct clients of the
class that use the extracted methods. Associations between the clients and the class are
redirected to the interface.

Describing Horizontal Model Transformations 101

Rule 4.3: Extracting an interface: creating the interface (a), redirecting client associa-
tions (b)

5 Architecture Optimization

In [11], Snelting describes an algorithm that optimizes the inheritance tree for a set of
classes4. The algorithm starts with a number of marked classes, that form the interface
of a system or a module. The algorithm distributes class features so that every subset of
features is localized in an internal class and multiple feature definition is avoided. This
section shows a rule-based implementation of the algorithm.

The algorithm consists of the following steps.

– Model analysis is used to collect class features. Here we can use the analysis rules
presented in section 3.

– After Defines and Contains relations have been calculated, containment classes
are created in order to capture sets of classes with equal feature sets.

– Inheritance relations can be introduced with respect to subset relationships of the
class sets described by containment classes.

– The last step of the transformation removes all intermediate and supporting classes
and graph nodes.

Model 5.1: Example model for the IHI algorithm

4 IHI: Inferring an optimal inheritance hierarchy.

102 A. Christoph

Example Model
The algorithm assumes that the interface classes of the input model are stereotyped as
<<INTF>>. These classes must be preserved during transformation. Model 5.1 shows
an example.

Model Analysis
This step creates Defines and Contains relations for the interface classes. Here, we
can use analysis rules from section 3. Model 5.2 shows the result of this step5.

Model 5.2: Defines and Contains relations

Rule 5.1: Creating containment classes: creating containment classes (a), building class
sets (b), merging identical sets (c)

5 Class 1 and Class 2 were omitted due to clarity.

Describing Horizontal Model Transformations 103

Containment Sets
For every feature class, rule 5.1(a) creates a supporting class that describe sets of classes
containing this feature. This is necessary to allow for set operations. Rule 5.1(b) builds
the set of all target classes of the Contains relation and stores it as a set of class
identifiers in a tagged value of the respective containment class. Rule 5.1(c) merges
identical containment sets.

Creating Inheritance
Two containment classes A and B can be connected via a generalization edge, iff A ⊂
B. Rule 5.2 finds such containment classes and connects them via a generalization edge.

Rule 5.2: Creating generalization edges

Model 5.3 shows generalization edges between definition nodes Def_m3 and
Def_m4 (classes {Class 3, Class 4} and {Class 3, Class 4, Class 5}).

Model 5.3: Created generalization edges

Transitive generalization edges that appear because of the transitivity of the subset
relationship are removed by another rule. For every interface class, rule 5.3(a) iden-
tifies a possible base class with the required set of features. Rule 5.3(b) modifies the
generalization, if a base class with a lower number of features can be found.

104 A. Christoph

Model Clean-up
After all transformations have been performed, clean-up rules remove all unnecessary
classes and relationships. The rule is not shown here.

Model 5.4 shows the result of the algorithm. Every interface class inherits its fea-
tures from an internal base class. In addition, the hierarchy avoids multiple feature dec-
larations and reuses sets of features.

Rule 5.3: Finding base classes: initial rule (a), iterative rule (b)

Model 5.4: Result of the IHI algorithm

6 Related Work

A lot of ideas for this work have been inspired by Assmann’s work. He showed the
applicability of graph rewriting systems to areas such as program analysis and opti-
mization [12,8], and Aspect-Oriented Programming (AOP) [13].

Describing Horizontal Model Transformations 105

There are several related tools available, that can be used to modify software and
software specifications.

UMLAUT [14] is a design transformation framework which provides searching, re-
trieving and modification functionality. UMLAUT allows the developer to specify de-
sign transformations that are executed on an imported software model. Transformation
specifications are based on list operations, such as selection and filtering. UMLAUT
focuses on model transformations for verification and testing.

Recoder [15] is a meta-programming environment capable of transforming Java ap-
plications. Transformation programs operate on an abstract syntax tree of the imported
program using the iterator API provided by Recoder. Transformed programs can be ex-
ported to source files. An example is the ’obfuscation’ of programs, i.e. the renaming
of classes and variables in order to make reverse-engineered code harder to understand.

The need to automate software analysis and restructuring lead to the development
of several algorithms, that were mainly developed to support reverse-engineering of
imperative programs.

Lundberg and Löwe describe an approach for software architecture recovery for
object-oriented systems [16]. Their goal is to reconstruct a sound component model of
object-oriented applications. The authors use a modified version of dominance analysis
to analyse component boundaries.

The Object Management Group (OMG) plans to integrate query and transformation
facilities into the UML standard. Therefore, the OMG issued a Request for Proposals
(RFP) on queries, views and transformations for software specifications (QVT).

The submissions to the RFP can be split into two groups.

– Implementation-based proposals, [17,18,19] focus on the imperative description of
queries and transformations. They use languages like the UML Action Semantics,
list operations or path expressions to specify target elements and transformation
operations.

– Rule-based proposals, [20,21] use pattern specification languages to match and
transform model elements, but their submissions don’t clarify how transformations
are applied and executed and how critical issues like rule termination, rule and pat-
tern selection are dealt with.

7 Conclusions

The presented work shows the applicability of graph rewriting systems for software de-
sign transformations. Even complex transformation algorithms, like architecture refac-
torings and optimizations can be expressed through graph transformation rules in the
context of the UML metamodel.

Although the current implementation of GREAT is not optimal , the usage of GREAT
in practice will free the developer from error prone, tedious, and time consuming tasks,
such as model analysis and transformation.

Further work is required to improve the performance of transformation applications
and to enhance the usability of GREAT.

– Improve performance. Measurements showed that the generated navigation and
transformation code performed well together with the metamodel implementation

106 A. Christoph

[7]. The most time consuming task is the identification of the rule graph patterns.
The code generated by OPTIMIX uses a simple ”nested loop join” algorithm. The
performance of the transformation code could be improved using more efficient
join algorithms, which only requires a modification of the OPTIMIX code genera-
tor. Also, a more sophisticated metamodel implementation would help to speed up
transformations.

– Improve usability. Support for debugging and tracing transformation rules is neces-
sary in order to enhance the usability of GREAT for real-world software engineer-
ing work.

For further information please have a look at the GREAT web-site
http://www.the-great-system.org.

References

1. Foundation, E.: (The eclipse platform)
2. Borland: (Together control center)
3. Christoph, A.: Graph Rewrite Systems for Software Design Transformations. In: Objects,

Components, Architectures, Services, and Applications for a NetworkedWorld: International
Conference NetObjectDays, NODe 2002, Erfurt, Germany, October 7-10, 2002. Volume
2591 of Lecture Notes in Computer Science., (Springer) 76–86

4. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The Model Driven Architecture: Practice
and Promise. Addison-Wesley (2003)

5. Frankel, D.S.: Model Driven Architecture. Applying MDA to Enterprise Computing. Wiley
(2003)

6. Group, O.M.: OMG XML Metadata Interchange (XMI) Specification (2000)
7. Christoph, A., Müller, M.M.: GREAT: UML Transformation Tool for Porting Middleware

Applications. In Stevens, P., Whittle, J., Booch, G., eds.: UML 2003 - The Unified Modeling
Language. Model Languages and Applications. 6th International Conference, San Francisco,
CA, USA, October 2003, Proceedings. Volume 2863 of Lecture Notes in Computer Science.,
Springer (2003) 18–30

8. Assmann, U.: Generierung von Programmoptimierungen mit Graphersetzungssystemen.
PhD thesis, Universität Karlsruhe, Fakultät für Informatik (1996)

9. Group, O.M.: UML version 1.1 (1997)
10. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley (2000)
11. Moore, I., Clement, T.: A Simple and Efficient Algorithm for Inferring Inheritance Hierar-

chies. In Mitchell, R., ed.: Proceedings of the Technology of Object-Oriented Languages and
Systems, Prentice-Hall, Hertfordshire, UK (1996) 173–184

12. Assmann, U.: On Edge Addition Rewrite Systems and their Relevance to Program Analysis.
In J., C., H., E., G., E., G., R., eds.: 5th International Workshop on Graph Grammars and
their Application to Computer Science. Volume 1073 of Lecture Notes in Computer Science.,
Springer (1994)

13. Assmann, U., Ludwig, A.: Aspect Weaving by Graph Rewriting. In Eisenecker, U., Czar-
necki, K., eds.: Generative Component-based Software Engineering, Springer (2000)

14. Ho, W.M., Jézéquel, J.M., Le Guennec, A., Pennaneac’h, F.: UMLAUT: an extendible UML
transformation framework. In: Proceedings of the 14th IEEE International Conference on
Automated Software Engineering, Cocoa Beach, Florida, USA, Institute of Electrical and
Electronics Engineers (1999) 275–278

Describing Horizontal Model Transformations 107

15. Ludwig, A., Heuzeroth, D.: Metaprogramming in the Large. In: 2nd International Confer-
ence on Generative and Component-based Software Engineering (GCSE), Erfurt, Germany.
Number 2177 in Lecture Notes in Computer Science, Springer (2000) 178–187

16. Lundberg, J., Löwe, W.: Architecture recovery by semi-automatic component identifi-
cation. In: Workshop on Sofware Composition (SC) 2003, Satellite Event of ETAPS
2003, Warsaw, Poland. Volume 82 of Electronic Notes in Theoretical Computer Science.,
http://www.elsevier.nl/locate/entcs/volume82.html, Elsevier (2003)

17. Ltd, K.C.: MOF Query, Views and Transformations. Initial Submission to OMG RFP (2003)
OMG ad/03-03-11.

18. Alcatel, Softeam, Thales, TNI-Valiosys: Response to the MOF 2.0 Query/Views/Transfor-
mation RFP (2003) OMG ad/03-03-25.

19. Corp., C.T.: MOF Query, Views and Transformations. Initial Submission to OMG RFP
(2003) OMG ad/03-03-23.

20. DSTC, IBM: MOF Query, Views and Transformations. Initial Submission to OMG RFP
(2003) OMG ad/03-02-03.

21. Corporation, C., Microsystems, S.: XMOF Queries, Views and Transformations on Models
using MOF, OCL and Patterns (2003) OMG ad/03-03-24.

Open MDA Using Transformational Patterns

Mika Siikarla, Kai Koskimies, and Tarja Systä

Tampere University of Technology, Institute of Software Systems,
P.O.Box 553, FI-33101 Tampere, Finland

{mika.siikarla, kai.koskimies, tarja.systa}@tut.fi
http://practise.cs.tut.fi

Abstract. No generally accepted understanding on the characteristics
of MDA transformation mechanisms exists. Various approaches to sup-
port such transformations have been proposed. In this paper, we discuss
general requirements for MDA transformation mechanisms. We claim
that, above all else, transformation mechanisms should be open, i.e. clear,
transparent and user-guided. We propose a new concept, a transforma-
tional pattern, as a basis of an MDA transformation mechanism. We
exploit existing tool support for this concept and show a small example
of how it can be applied. Finally, we analyse the ability of the proposed
technique to fill the requirements.

1 Introduction

A clearly identified long-term trend in software engineering is the introduction of
higher and higher abstractions from which actual implementations are derived.
OMG’s Model-Driven Architecture (MDA) initiative [1] is a recent manifesta-
tion of this trend. A key idea in MDA is that system development should be
based on high-level, platform independent models (PIM) from which lower level
platform-specific models (PSM) and eventually implementations are derived with
the support of transformation tools.

Although the vision behind MDA is generally accepted, the required tool
technology is just taking its first steps. Some early tool support exists (e.g.,
ArcStyler [2]), but the underlying concepts and paradigms of the tools are far
from well understood, if even existing.

Obviously, there are many ways to specify and execute transformations from
one model to another. A straightforward approach to specify the transformations
in an executable form would be a script language with access to a model repos-
itory and appropriate navigation and query capabilities. Then, transformations
could be realized simply as scripts.

The real challenge of MDA transformation tool support is not in devising
the computational vehicle, but rather in the collaboration of the designer and
the tool. A simple black-box approach (e.g. a Python script) would hide the
relationship between the source and the target model from the designer, making
it very difficult to work with the result. If the path from a platform independent
model to executable implementation were completely automated, this would

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 108–122, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Open MDA Using Transformational Patterns 109

not be a problem, but we argue that this is an unrealistic idea, at least in the
near future. Typically, the designer has to examine the result, understand it,
and apply further transformations or modifications on some parts of the result.
Thus, we propose that an MDA transformation tool should be open in the sense
that it allows the designer to be involved in the transformation process.

In this paper we will first discuss the required properties of an MDA trans-
formation mechanism in more detail. As a potential approach to satisfy these
requirements, we introduce the concept of a transformational pattern, which we
believe can serve as the basis of open MDA transformations. This concept is
an application of a generic pattern facility originally developed for supporting
framework specialization [3]. We demonstrate the use of this technique by show-
ing how a J2EE model can be generated from a platform-independent UML
model for a Web Services application. Based on this example, we briefly analyse
the extent to which this approach meets the requirements. Finally, we discuss
related work and the future directions of our work.

2 MDA Transformation Mechanics

We see the primary role of a transformation as documenting the relations be-
tween different models of the same system. With this added information ex-
pressed in computer readable form, the models can be kept synchronized and a
change in one model does not render all other models obsolete. This is absolutely
vital for MDA. The description of these relations, i.e. the record of transforma-
tion according to [4], contains unique information about the system, and should
therefore be considered a model itself.

Another important, although secondary, role is to support the designer in de-
riving one model from others, by alleviating the burden of at least the repetitious
and trivial tasks. In some very specialized cases, such as a specific product-line, it
might be possible to achieve fully automated transformations. However, it seems
overly optimistic to expect fire-and-forget solutions for all possible situations
any time soon. The intermediate, or derived, models do therefore contain more
information than just what is derived. They have value as original artefacts and
should not be considered as mere documentation.

In our view, transformation definitions are software artefacts. They are sub-
ject to evolution the same way design models or program files are. We expect,
for example, that a set of model transformations can be given for a product-
line platform to be used for the derivation of the designs for individual software
products. Such a set of transformations is an integral part of the product-line
and goes through changes and versions together with the other assets belong-
ing to the product-line. It is likely, in fact, that the transformation mechanisms
themselves need maintenance and evolve as the subject system does.

We raise openness as the most important property that is required of an
MDA transformation mechanism. The designer should participate in the trans-
formation process, guiding it with her decisions, rather than receive the results
of a black-box operation as an outsider. The mechanism itself should be trans-
parent, allowing the designer to follow how the models are being manipulated.

110 M. Siikarla, K. Koskimies, and T. Systä

The meaning of every step in the transformation process should be clear. When
using a clear and transparent machinery, the designer is better equipped to make
decisions affecting the transformation. She can be trusted to make an educated
choice between possible courses of action even during the transformation.

We argue that the open approach is safer, allowing the designer to understand
the resulting model and modify it, if needed. In the black-box case modification
of the result is risky, because the designer does not understand the purpose of
different parts of the result, and therefore cannot judge the relationship elements
in the target and source models. Note, that a part not dependent on the source
model can be altered without compromising the relationships between the mod-
els. In the absence of fully automated transformations, it would be unreasonable
to completely forbid modifications of the resulting model.

In some cases, where no single transformation process can be found for a cat-
egory of systems, it is still possible to find transformation principles that apply
to each of the systems. E.g. software products developed from the same product-
line, or systems belonging to a particular application domain, might form such
categories. The transformation mechanism should support customisable trans-
formations that contain the common principles and provide variation points for
customisation. Unlike with direct editing of the result, some customisation needs
are foreseen and built into the transformation.

It is possible that some part in the target model resulting from applying a
transformation is not considered acceptable for the particular application. In-
stead of trying to guess what changes in the source would lead to the desired
result, it should be possible to change the result directly and produce a source
model corresponding to the modified result. In cases where the source or tar-
get metamodel or the transformation itself loses information, bi-directionality
cannot be fully achieved. However, the transformation mechanisms themselves
should be unbiased as far as the direction of the transformation is concerned,
and not force or encourage the transformation definitions to be unidirectional.

If a modification breaks several transformation rules and there are several
ways to repair them, user-assisted repairing might be preferable to automatic
repairing actions. In both cases the elements impacted by the modification should
be traceable. In order to fix a problem, or to correct a mistake, it might be desir-
able to reverse the application of a transformation, effectively undoing it. This
might prove to be challenging in practise. Traceability and reversibility are exam-
ples where knowledge of the relations between models are needed. This implies,
that applying a transformation leaves a persistent record of transformation.

It should be possible to carry out the transformation one step at a time, rather
than as a batch. Incremental transformation process contributes to the fine-
grained management of the transformation, with a number of benefits. First, it
contributes to openness, supporting understanding in general: the process can be
better followed when divided into small pieces. Second, it allows for fine-grained
backtracking: if the process appears to be going in a wrong direction, individual
steps can be undone without losing the results produced so far. This is useful for
steps with variation points. Third, incremental processing supports fine-grained

Open MDA Using Transformational Patterns 111

customisability: variation points can be attached to individual steps rather than
to the entire process. In this way variation points can be shown only when really
needed: if a variation becomes obsolete because of earlier choices, the variation
point need not be presented at all. Fourth, partial transformation processes
are supported, where sensible (but incomplete) target models are produced on
the basis of incomplete source models. This allows for partial evaluation of the
transformation when developing or maintaining the transformation itself.

A transformation process can consist of several single, well-focused trans-
formation steps. Therefore, mechanisms to compose configurations of individual
transformation operations are needed. In these configurations, dependences and
constraints between the individual operations should be supported, yielding to
a need for an actual transformation language. Such combinability enables and
promotes transformation reuse. There is also a need to relate different models
together in one transformation. For instance, to form a platform-specific model,
information from a platform-independent model as well as from specific platform
deployment and description models might be needed. Combining information
from different source models in a “concern-oriented” way would help the user to
better understand and manage the dependences among the models.

Since transformation definitions are software artefacts, they need to be main-
tained throughout their life cycle. Therefore, transformations should be main-
tainable, implying that a transformation is specified in a manner that allows easy
replacement of its parts. Customisability and combinability promote reuse and
therefore improve maintainability. Many properties, especially openness, make
transformations easier to understand, which helps in maintenance.

Documentation of the transformations is needed, so they can be understood
and applied. Documentation is also needed for maintenance. Therefore transfor-
mations need to have an illustrative presentation, e.g. a visual notation that can
be understood by the different parties involved. Since people comprehend exam-
ples better than rules or algorithms, it would be beneficial if examples could be
constructed out of definitions and vice versa. Some visual presentation is needed
for examples, too, and for visualizing mappings between models.

3 Transformational Patterns

In this work a pattern is an organized collection of software elements capturing
any concern that is relevant for some stakeholder of the system. To be able to
define a pattern independently of any particular system, a pattern is defined in
terms of element roles rather than concrete elements; a pattern instance is tied
to a particular context by binding its role instances to concrete elements. The
relationship between a pattern and its pattern instance can be viewed as that of
a model and its instance. Roles can then be seen as classes and role instances as
objects. In this paper, we simply use the term pattern when referring to pattern
instance, or role when referring to a role instance. The full term is only used
when there is a risk of misunderstanding.

A role has a role type, which determines the kind of system elements that
can be bound to the role’s instances; the set of all valid role types is called the

112 M. Siikarla, K. Koskimies, and T. Systä

domain of the pattern. For example, if the domain is UML, the role types are
the element types (metaclasses) of UML: there are class roles, operation roles,
association roles etc. In the following we assume that the domain is UML.

Each role may have a set of constraints. Constraints are conditions that
must be satisfied by the model element bound to a role’s instance. For exam-
ple, a constraint of a class role C may require that only a class stereotyped as
�Persistent� can be bound to an instance of C. Constraints may also refer to
other roles, e.g. a constraint on association role A may require that an associa-
tion bound to A’s instance must appear between classes bound to (instances of)
certain class roles C1 and C2. Note that such a constraint implies (perhaps indi-
rect) relationships between roles A and C1 as well as A and C2. Continuing with
the pattern-model analogy, these relationships can be though of as associations.

A completely bound pattern instance therefore poses constraints on the ele-
ments bound to the role instances. The constraints from the pattern have in effect
been joined with constraints in the domain model. For example, one of the UML
well-formedness rule states that an attribute of a class may not have the same
name as the class. The first pattern in the example above states that each class
bound to (an instance of) the role C must be stereotyped �Persistent�. Every
element in the UML model must now fulfil both these constraints (although,
the first still only applies to classes, and the second only to appropriately bound
classes). If a model modification violates a constraint, the model must be fixed
by adding, removing, or modifying elements until the constraint holds again.

In addition to constraints, default values can be specified for a role. For
example, a class role might be given "Breakfast" as the default name, and
false as the default value for the property isAbstract. If a role with default
values needs to be bound, a new element can be generated and bound to the
role. The default values do not need to be constants, and they can refer to other
roles. For instance, the default name for a class role KeyClass might be defined
as the name of the class role Class appended with "Key". In order to make use
of the default value, Class must of course be bound.

Exploiting the default values as a generative mechanism, a pattern can be
used in any context where a collection of elements needs to be generated based
on well-defined relationships between existing and the generated elements. This
is the situation when a PSM is generated based on a PIM according to cer-
tain well-defined transformation rules. In this context a pattern implements a
transformation rule or a set of transformation rules. We call such patterns trans-
formational patterns. Assuming tool-assisted binding and element generation,
patterns offer an attractive approach to realize MDA transformations.

A transformational pattern spans multiple domains. For example, consider a
transformation from UML to EJB. The set of valid elements for binding contains
all the elements from the UML and EJB models. The domain of the pattern
contains the metaclasses from the UML metamodel and the metaclasses from the
EJB metamodel. Role types include class role (UML), association role (UML),
data schema role (EJB), component role (EJB), etc. From the pattern’s point of

Open MDA Using Transformational Patterns 113

Fig. 1. A transformational pattern as a function

view, there is a single model, comprised of the UML model and the EJB model,
side-by-side, but separate.

The purpose of the transformational pattern is to modify (a fragment of)
the combined model so that the constraints for the pattern’s roles hold for the
model elements. Of course, the constraints only need to hold for elements bound
to roles in the pattern. If the target model is empty, and all elements in the source
model are bound, the constraints can be satisfied by creating new elements in
the target model. If the default value cannot be computed, or does not exist, the
constraints cannot be satisfied automatically. In a case where there are bound
elements in both the source and the target model, constraint violating elements
must be modified, and new elements provided for unbound roles.

To put it in a bit more formal way, a transformational pattern can be seen as
a function that for a pattern instance computes the default values for unbound
role instances (output roles) from the values of the bound role instances (input
roles). One new element is created for each output role and the element is bound
to the role. It is important to note, that the division to input and output roles
does not necessarily reflect the division to source and target elements. It is
very much possible to compute some source and target elements based on a set
of existing source and target elements. Figure 1 illustrates a transformational
pattern function.

The specifications of default values of roles are called element templates.
For role r, this specification is denoted with function Elemr(Bound(r1), . . . ,
Bound(rk)), where r1, . . . , rk are the roles referenced in the element template
specification. Bound(ri) represents the element ei bound to role ri. The function
yields a new concrete element, assuming that the roles r1, . . . , rk have been
bound. Elemo needs to be evaluated for each output role o. This is possible, if
default values are specified and the references between the output roles imply a
partial order. For any sequence o1, . . . , on, where oi never depends on oj when
i < j, the elements for output roles can be computed with

Bound(o1) = Elemo1(Bound(r1,1), . . . , Bound(r1,k1)) = Elemo1(e1, . . . , ek1)
. . .
Bound(on) = Elemon(Bound(rn,1), ..., Bound(rn,kn)) .

114 M. Siikarla, K. Koskimies, and T. Systä

4 Tool Environment: MADE

MADE [5] is an integrated collection of tools for pattern-driven UML modelling.
Rational Rose [6], a UML modelling tool, is one of the key components, enabling
visualization and manual modification of models. We have used MADE as a
prototype tool environment for transformational patterns (explained in Sect. 3).
Although MADE has not been designed with transformations in mind, the under-
lying pattern concept is sufficiently generic to provide the required mechanisms
and user interface for applying transformational patterns in the UML domain.
MADE supports the specification of patterns, and the interactive binding of the
roles of a pattern to UML model elements residing in Rose.

A key functionality of the environment is, that it transforms a (possibly
partially bound) pattern into a task list. A task is generated for each unbound
role, but only if all the other roles it depends on are already bound. The designer
completes such a task by providing an element to bind to the role. Either the
designer points out an existing model element or she asks the tool to generate
a new element based on the default values for that role. She has full access to
the UML modelling tool, Rose, and can manually create an element, e.g. a class,
and then point that out to complete a task. The pattern specification can be
associated with informal instructions for binding the roles, which are shown to
the user when the corresponding task is to be performed.

MADE checks that role constraints are satisfied by bound elements. In the
case of constraint violations, new corrective tasks are created. In many cases the
tool can provide an option to correct the model automatically. Because binding
information is preserved even after applying the pattern has been completed,
any constraint violating changes to the model can be detected. For example, free
model editing actions in Rose can cause corrective tasks. Persistent bindings also
save from having to re-apply patterns when the model is changed.

The tool also maintains a list of pattern instances. Patterns with constraint
violations or unbound roles are indicated with a red marker. When the designer
selects a pattern, only tasks related to that pattern are displayed. This helps the
user keep focused and not get distracted by concerns irrelevant to her goal. For
the same reason, tasks that can not be performed at the moment are not shown.

For use with transformational patterns, the central functionality of the tool
environment is the incremental, task-driven binding process, combined with the
generation of default elements. This allows for stepwise performing of a trans-
formation, keeping the designer aware and in control of each step. The designer
can customize the transformation process by following different task paths. Fur-
ther, a pattern stores the information about the transformation, so that it can
be later retrieved and used for various purposes (e.g. tracing, comprehension,
visualization). Some parts of the transformation can be easily redone later, as
long as the constraints defined by the pattern still hold after the changes.

The MADE environment is still in the prototype stage, and there are short-
comings in some areas. For example, pattern combining is still under develop-
ment, and currently only allows static combining. A groups of patterns can be
composed and then applied instead of a single pattern. However, patterns cannot

Open MDA Using Transformational Patterns 115

be added to a group dynamically, for example, based on properties of the model
or user decisions. Also, the tool provides no real visual notation for pattern def-
initions or for (partially or completely) bound pattern instances. It is possible
to highlight elements bound to a specified pattern instance, but that does not
show which element corresponds to which role in the pattern.

MADE has not been designed explicitly for transformational patterns. Rela-
tions between pattern roles are modelled as dependencies instead of associations,
and are thus directed. This is not a problem with design patterns, but it does
make transformational patterns unidirectional in practice. The lack of associa-
tions also makes it impossible to navigate from a role directly to a related role
with OCL. Navigation is performed by referring to the role by its name.

5 Applying Transformational Patterns in MDA: An EJB
Example

The example is a transformation of a UML model (PIM) (Fig. 2) to an EJB
model (PSM). Starting with a set of informal, natural language transformation
rules we form transformational patterns, which are entered into the MADE tool.
The patterns are then applied to the source model to produce the target model.

The UML model and the set of transformation rules were adapted from
an example by Kleppe et al. [7]. The model describes a small business, Rosa’s
Breakfast Service, and consists of 7 classes and 5 associations. The structure of
the PIM is presented in the class diagram in Fig. 2, but most attributes have been
omitted to keep the diagram small. The transformation rules (in Fig. 3) have
been re-worded, but should still express the idea of the original ones. Although
the example is rather small, it does require roughly 40 separate invocations of
the rules listed. It is therefore suitable for demonstrating our approach.

Some of the rules refer to a root class. In this context it means the root of
the hierarchy implied by composite-associations between classes. For example,
in Fig. 2, the root class of Breakfast is BreakfastOrder, and the root class of
Customer is Customer itself. An EJB data schema (or an EJB component) cor-

Fig. 2. PIM of Rosa’s Breakfast Service (adapted from [7, Fig. 4-2, p.48])

116 M. Siikarla, K. Koskimies, and T. Systä

1. (a) For each PIM class, an EJB key class is generated.
(b) For each PIM association class, an EJB key class is generated.

2. For each root class, an EJB component and an EJB schema are generated.
3. For each PIM class, an EJB data class residing in the EJB data schema corre-

sponding to the PIM class is generated.
4. Each PIM association is transformed into an EJB association.
5. For each PIM association class, two EJB associations and a data class are gener-

ated.
6. Each attribute of a PIM class is transformed into an EJB attribute of a data class.
7. Each PIM operation is transformed into an EJB operation of the EJB component

corresponding to the PIM class of the PIM operation.

Fig. 3. Informal transformation rules (adapted from [7, p.58])

Fig. 4. Two of the transformational patterns corresponding to the informal rules

responding to a PIM class is the schema (component) that was generated by rule
2 based on the root class of the PIM class.

Each informal rule is modelled as a single transformational pattern, except
for rules 1, 4, and 5, which have two alternative patterns. The rules could have,
of course, been modelled in many different ways, resulting in a different set of
patterns. Fig. 4 shows two of the patterns, and the rest are omitted for brevity.
The top one corresponds to rule 1a, and describes the relationship between a
UML class and an EJB key class. The bottom one corresponds to rule 1b. Both
patterns have already been converted to a form required by the MADE tool. I.e.,
associations have been replaced by dependencies and OCL-constraints refer to
pattern roles directly by their names instead of navigating along associations.

Each class (rectangle) in the picture represents a role and a dependence
(arrow) between roles means that one role refers to the other in a constraint or
a default value specification. The smaller of the two patterns in Fig. 4 contains
four roles; Class (UML class role), KeyClass (EJB key class role), Attribute (EJB
attribute role), and EJBDataType (EJB datatype role).

Open MDA Using Transformational Patterns 117

Fig. 5. Four screenshots from applying the pattern Class-to-Keyclass

KeyClass refers to Class, and Attribute refers to every other role. Constraints
are shown inside the class symbols, one OCL constraint per line. For example,
Attribute has three constraints; the first one constrains the name, the second
one requires Attribute to be contained within KeyClass, and the third one states
that Attribute’s type must be EJBDataType. The constraints have been cut off
at the edge of the class. For example, the complete constraint for KeyClass is
name = class.instance.name +’Key’. The default values for attributes have
been omitted, since in this case they would look exactly like the constraints.

To apply the patterns, the designer opens the source model in Rose and starts
MADE. She can then select, e.g. the Class-to-KeyClass -pattern (Fig. 4, on top)
and begin applying it. No roles are bound yet, and only two of the pattern’s roles,
Class and EJBDataType, do not depend on other roles. Therefore there will be
two visible tasks: Provide ’Class’ and Provide ’EJBDataType’. The designer
can now select the task for Class and choose to locate an existing element.

Figure 5a contains a screenshot of MADE at this moment. The top left corner
shows the pattern selection, as well as a list of pattern instances. The next pane
to the right contains a view of the active pattern instance. This pane is empty,
because there are no elements bound to the pattern instance’s roles. The pane
in the top right corner shows current tasks. A dialogue for selecting a UML class
to be bound to the Class role is in the lower left corner.

The designer chooses to apply the transformation on the class Breakfast. The
class Breakfast is bound to the role Class, satisfying the task Provide ’Class’,
which disappears. A new task appears for KeyClass, because it only refers to
Class, which is now bound. Breakfast appears in the list of bound elements,

118 M. Siikarla, K. Koskimies, and T. Systä

signifying that it is bound to a class role. Figure 5b shows the list of bound
elements and unfinished tasks as they would appear.

Let us assume that the target model has already been populated with the
basic data types, such as string, integer, etc. The designer can select the task for
EJBDataType and choose to locate an existing element. The constraint (name =
’Integer’) is used to locate the class. The task is now completed, and disappears
(Fig. 5c). Integer is added to the list of bound elements. No new tasks appear.

The designer highlights the remaining task and chooses to automatically
complete it. Default value has been specified for role KeyClass and the tool
creates a new class with the name BreakfastKey in Rose. The generated element
is bound to the role, and added to the list of bound elements. The completed
task disappears and a new one appears for the role Attribute (Fig. 5d).

The element for the attribute role, too, can be generated, and the designer
chooses to have MADE do that. A new attribute is created for the class Break-
fastKey, the name of the attribute is set to "BreakfastID", and its type is set
to be the class Integer. The task is completed, BreakfastID is added to the list
of bound elements, and the task disappears. The pattern has now been applied
successfully for Breakfast. For this PIM, the pattern would be applied 4 more
times, once for each regular class.

For the two association classes, the pattern in the lower half of Fig. 4 is
used. After choosing to apply the pattern, tasks appear for AssociationClass
and EJBDataType. The latter can be automatically bound to the correct basic
type (Integer). The designer has to select the association class manually, and she
picks Change. Three new tasks appear, one for each of KeyClass, AssocEnd1,
and AssocEnd2. The designer lets the tool create an element for KeyClass. She
completes the active tasks by manually binding each association end.

The two new tasks (for Class1 and Class2) could be fulfilled automatically,
since an association end can only be connected to a single class. However, the
automatic locating of elements in MADE works based on the value of the name
field only. The designer has to choose those manually, too. The elements for
Attribute1 and Attribute2 can be generated automatically, and that is what she
decides to do. Applying the pattern is finished.

6 Evaluation

The first thing to note about the example is how much user interaction it re-
quires. Each transformational pattern must be applied manually, and the user
must initiate each generate or locate operation, even if the tool can complete it
autonomously. With a source model of 41 elements (classes, attributes, etc.), as
in the example, there will be 41 instances of transformational patterns applied.
With the exact rules used here, this translates to 163 manual selections and 93
automatically located or generated elements. This observation, although correct,
is in many ways misleading.

The numbers are in no way absolute, because they are highly dependent on
how the rules are modelled. Regardless of the exact numbers, the burden on
the user is far too high. However, the low level of autonomy is due to the tool,

Open MDA Using Transformational Patterns 119

not the approach, and the user interaction could be greatly reduced with simple
measures. In fact, because this particular set of rules is unambiguous, the user’s
participation could be limited to simply initiating the transformation. It should
be noted, that we do not consider full automation as an important goal.

MADE can be instructed to automatically bind every role as soon as the
roles it depends on are bound. If this option were extended to take into account
more than just the name field, the user would be relieved of many monotonous
tasks. If, in addition, each transformational pattern were applied automatically
to each configuration of elements that satisfies the pattern’s structure and other
constraints, all but 14 cases of user choices could be eliminated. In those cases, a
single pattern by itself does not have enough information of the transformation as
a whole to locate or generate the necessary elements. In order to make the correct
choices, the tool must have some idea of the way the individual patterns overlap
and interact. We believe this could be achieved by expanding the experimental
pattern composition functionality to allow dynamic composition.

Applying transformational patterns, even with the most basic tool support,
fulfills many of the requirements discussed in Sect. 2. The approach is transpar-
ent, and does not hide transformation mechanics. The designer has full command
of the process, and can change any details right down to the level of individual
bindings. Even when the tool is improved to better facilitate automatic steps,
they will only be engaged at the user’s discretion, not the tool’s. This all helps
the designer to understand each step of the process, which leads to openness.

Customisability is limited to user’s choices and relies on her decisions. A task
can be defined as optional, and if chosen, can reveal an otherwise inaccessible
path of tasks. It might also be possible to use dynamic composition of patterns
to introduce more elaborate variation points. Customisability is one of the areas
where better mechanisms and further research is needed.

Patterns, as implemented on MADE, are biased towards a direction, because
dependencies are directed. But patterns as described in Sect. 3 use associations
to express relations between roles. Forcing the user to choose in which role a
symmetric constraint is placed does tilt the balance in favour of one direction
over the other. Using associations, the other role(s), too, could have such a
symmetric constraint. Constraints could even copied and added automatically
for simple constraints, such as equality, that are easily recognised as symmetric.

MADE stores information about bindings, which makes the record of trans-
formation persistent. Even after modifications to the models, the record can still
be used as a starting point for synchronizing the models. None of the user de-
cisions are lost, although some might have become irrelevant. Reversibility and
traceability can thus be achieved. On the other hand, MADE lacks facilities,
illustrative or not, to visualise these mappings. Elements that are bound to a
particular pattern instance can be highlighted in Rational Rose, but there is no
indication of which role an element is bound to. So, it is possible to find out
information about the relations between elements of different models, but there
is no easy way to study it in the tool.

120 M. Siikarla, K. Koskimies, and T. Systä

Using patterns for transformations enables performing the transformation in
small, incremental steps. The problems with the current machinery are in com-
bining these steps into transformations and, further combining transformations
together into bigger transformations. This has a negative effect on reusabil-
ity and maintainability. Lack of visualisation also makes documenting more
difficult.

To recap; our approach, as it is now, provides open, incremental, traceable,
reversible, and unbiased transformations, but has problems when it comes to
visualising, customising and combining transformations. The current tool envi-
ronment works for evaluating the approach, but is not mature enough for real
transformations. It burdens the user with some tasks it should carry out au-
tomatically and supports only unidirectional transformations. Improving facili-
ties, both with the approach and the tool, to properly address the challenges is
vital.

7 Related Work

Work by Hausmann et al. on visualizing model mappings [8] is partly driven
by goals similar to ours. In their work, mappings between model elements are
thought of as relations in the mathematical sense. Model mappings are expressed
with extended UML class and object diagrams. The importance of comprehensi-
ble transformations and rules is one of the main issues raised and discussed. Being
based on relations, the approach encourages bi-directional transformations.

QVT-Partners’ response [9] to the Query / Views / Transformations (QVT)
request for proposals is one of the most detailed and finished work. It describes
a language for transformations and a textual and a visual representation for
it. Transformations are divided into relations and mappings. Relations are bi-
irectional, but can only be used for checking whether the source and target model
are properly synchronized. Mappings are used for performing a transformation,
but are restricted to one direction.

Many approaches at MDA transformations are based on graph grammars.
Such approaches tend to produce strictly unidirectional transformations due
to the clear separation to left hand side (LHS) and right hand side (RHS) in
individual rules. Also, definitions are often given only in a textual form. For
example, GREAT [10] is a graph rewrite system for transformations on UML
models, where LHS is defined with a textual language. RHS is defined as Java
code, which manipulates the model through an API. Such transformations are,
of course, unidirectional.

The theories behind VMT [11] and BOTL [12], too, are based on graphs.
Both use attributed labelled graphs and offer a graphical notation for describing
a source (LHS) and target template (RHS) for transformation rules. In VMT
transformations can only be performed on UML models and in one direction.
BOTL transformations can be bi-directional and can handle arbitrary metamod-
els. The expressive power of VMT’s visual notation is enhanced with OCL.

Open MDA Using Transformational Patterns 121

Some approaches use XSLT to process models in XMI form. Due to the
nature of XMI these approaches are rarely limited to a single metamodel. XSLT-
based methods are often textual, but UMLX [13] is a graphical transformation
language. The metamodels (called “schemas” in UMLX) is given using a subset of
the UML class diagram notation. Transformations are defined with an extended
class diagram notation, and are translated into XSLT form using the information
about the structure of the metamodel. The XSLT is then executed on the input,
which is provided in XMI form. Transformations are unidirectional.

A textual transformation language, based on rules, is described in [7]. The
language is intended as a means to illustrate the sample transformations, and
not as a real transformation language. Transformations are composed of small
rules and can be declared as either unidirectional or bi-directional. OCL has an
important role in the language.

The focus on most papers is on explaining the mechanics of the language or
approach. Characteristics such as openness, customisability, maintainability, and
how illustrative are the notations used, fall out of scope. It is therefore difficult
to determine how much emphasis is placed on these aspects, which in our view
are of great importance.

Similarly to our approach, Catalysis [14] makes use of role-based patterns (so-
called “frameworks”) for describing abstract collaborations of model elements.
A major difference is that Catalysis emphasizes specifications of the semantics of
the collaboration while we have a more pragmatic view emphasizing task-driven
model (or code) generation based on the default value specifications.

8 Concluding Remarks and Future Work

In this paper we first listed and discussed what we believe to be key require-
ments for MDA transformations: openness, customisability, combinability, trace-
ability, and maintainability. The new approach at MDA transformations, trans-
formational patterns, was described and explained. A more generic pattern tool,
MADE, was presented briefly. An example of performing a simple transforma-
tion using transformational patterns and the tool was presented. The approach
was evaluated in light of its applicability in the example and its compliance with
the key MDA requirements. Last, other groups’ work on visualising and defining
model transformations and mappings was discussed.

The example was very limited, but it did indicate some strengths and weak-
nesses of transformational patterns. We wish to pursue several related issues fur-
ther. Visualisation of patterns, as well as the reverse, discovering patterns from
examples are important for usability. Defining and utilizing variation points is
another area of interest for us. The rule composition mechanism needs more
flexibility. We are looking into implicit and explicit rule scheduling, as well as
some hybrid solutions. Also, the tool support must be elevated. We are currently
working on supporting arbitrary MOF-based metamodels in processing and vi-
sualisation. We hope to carry out a more realistic case study, where neither the
transformation specification nor the set of models is unrealistically simple.

122 M. Siikarla, K. Koskimies, and T. Systä

References

1. OMG: Model driven architecture (MDA) (2001) On-line at http://www.
omg.org/cgi-bin/apps/doc?ormsc/01-07-01.pdf.

2. Interactive Objects Software: Arcstyler tool homepage (2004) on-line at
http://www.arcstyler.com/.

3. Hakala, M., Hautamäki, J., Koskimies, K., Paakki, J., Viljamaa, A., Viljamaa,
J.: Generating application development environments for java frameworks. In:
Proceedings of the Third International Conference on Generative and Component-
Based Software Engineering, Springer-Verlag (2001) 163–176

4. OMG: MDA guide version 1.0.1 (2003) On-line at http://www.omg.org/cgi-
bin/apps/doc?omg/03-06-01.pdf.

5. Hammouda, I., Pussinen, M., Katara, M., Mikkonen, T.: Uml-based approach for
documenting and specializing frameworks using patterns and concern architectures.
In: The 4th AOSD Modeling With UML Workshop. (2003)

6. Rational: Rational Rose home page (2004) on-line at http://www.rational.com/.
7. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-

ture: Practice and Promise. Addison-Wesley (2003)
8. Hausmann, J., Kent, S.: Visualizing model mappings in UML. In: Proceedings of

the ACM Symposium on Software Visualization. (2003)
9. QVT-Partners: Revised submission for MOF 2.0 Query / Views / Transformations

RFP (2003) On-line at http://www.omg.org/cgi-bin/apps/doc?ad/03-08-08.pdf.
10. Christoph, A.: Graph rewrite systems for software design transformations. In:

Revised Papers from the International Conference NetObjectDays on Objects,
Components, Architectures, Services, and Applications for a Networked World,
Springer-Verlag (2003) 76–86

11. Sendall, S., Perrouin, G., Guelfi, N., Biberstein, O.: Supporting model-to-model
transformations: The VMT approach. In Rensink, A., ed.: CTIT Technical Report
TR-CTIT-03-27, Enschede, The Netherlands, University of Twente (2003) 61–72

12. Braun, P., Marschall, F.: BOTL - the bidirectional object oriented transformation
language. Technical Report TUM-I0307, Technische Universität München (2003)

13. Willink, E.D.: UMLX: A graphical transformation language for MDA. In Rensink,
A., ed.: CTIT Technical Report TR-CTIT-03-27, Enschede, The Netherlands, Uni-
versity of Twente (2003) 13–24

14. Catalysis: Catalysis home page (2005) on-line at http://www.catalysis.org/.

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 123 – 138, 2005.
© Springer-Verlag Berlin Heidelberg 2005

“Weaving” MTL Model Transformations

Raul Silaghi, Frédéric Fondement, and Alfred Strohmeier

Software Engineering Laboratory,
Swiss Federal Institute of Technology in Lausanne,

CH-1015 Lausanne EPFL, Switzerland
{Raul.Silaghi, Frederic.Fondement,

Alfred.Strohmeier}@epfl.ch

Abstract. Model transformations are the core of the MDA approach to software
development. As specified by the OMG, model transformations should act on
any kind of model of any kind of metamodel, which implies the possible
“reflective” use of model transformations, i.e., model transformations acting on
model transformations. However, this requires transformation developers to be
familiar with the metamodel of the transformation language itself, which is not
always the case. In order to overcome such a frustrating impediment for the
MTL language, and inspired by AOP approaches, we have designed and
implemented an MTL weaver that modifies MTL transformations according to
some weaving behavior, which is specified as special MTL transformations,
called MTL-aspects, using an AOP-like extension to the MTL language. Both
the weaver and the language extension are presented in this paper, and an
example is used to show how transformation developers can take advantage of
the proposed language extension constructs in order to write “reflective” model
transformations in MTL without requiring any previous knowledge of the MTL
metamodel itself.

Keywords: Model-Driven Architecture, MDA, Model Transformations, MTL,
Aspect-Oriented Programming, AOP.

1 Introduction

To escape from the proliferation of middleware infrastructures and to avoid drowning
in their implementation complexities, models are proposed as a far more accessible
and easier means for developers to build, extend, and evaluate applications than
working directly at the code level. The Model Driven Architecture (MDA) [1][2], an
Object Management Group (OMG) [3] initiative, promotes the separation of concerns
between two modeling dimensions: one focusing on the business functionality
(resulting in Platform Independent Models – PIMs), and the other one focusing on the
implementation of that functionality on a specific middleware platform (resulting in
Platform Specific Models – PSMs). Since in this paper we consider the middleware to
be our MDA platform, further on we will directly refer to the middleware instead of
the general concept of (MDA) platform.

Besides the obvious importance of PIMs and PSMs in MDA, model
transformations are undoubtedly the key technology in the realization of the MDA

124 R. Silaghi, F. Fondement, and A. Strohmeier

vision [4]. Among other usages, model transformations are the ones responsible for
refining PIMs into PSMs (or abstracting away from PSMs to PIMs) and mapping
PSMs to concrete middleware-based implementations, providing thus an elegant
approach to adapt PIMs to the peculiarities of the new middleware infrastructures that
do not cease to appear.

Unfortunately, there is not yet a standard language for defining model transforma-
tions. To fill this gap, OMG has issued a Request for Proposal called MOF 2.0 Query/
Views/Transformations RFP [5], which has been answered by eight different initial
submissions, five revised submissions, and finally two “joint” revised submissions.

A clear requirement in OMG’s RFP was (and still is) that model transformations
should be able to act on any kind of model of any kind of metamodel. Since model
transformations are at the same time models compliant with the metamodel of the
transformation language, model transformations should be able to transform other
model transformations independently of their metamodels. As a consequence, all
currently existing model transformation languages (to our knowledge) implement
such a “reflective” behavior. However, the “reflective” use of model transformations
is not trivial.

Typically, writing model transformations for driving the development process of
domain-specific applications requires the transformation developer to be familiar with
the metamodel of that specific domain and with the syntax of the model transfor-
mation language used – and no more than that. As a consequence, many transfor-
mation developers are not at all familiar with the metamodel of the transformation
language itself, and thus they are not capable of writing “reflective” model
transformations, i.e., model transformations that transform already existing model
transformations.

In order to overcome this frustrating impediment for the INRIA Model
Transformation Language (MTL) [6], we present in this paper a solution inspired by
Aspect-Oriented Programming (AOP) [7] approaches. We have designed and
implemented an MTL weaver that modifies MTL transformations according to some
weaving behavior that is specified as a special kind of MTL transformations, called
MTL-aspects. The MTL transformation produced by the MTL weaver can be
immediately used for refining application models.

Like in AspectJ [8][9], which is an aspect-oriented extension to Java, the syntax
defining the weaving behavior in MTL-aspects is a small AOP-like extension to the
MTL language itself. In this way, relying on a few high-level AOP-like but MTL-
based constructs for defining the weaving behavior, average MTL transformation
developers should not have any problems using this MTL extension straightforwardly
for defining their “reflective” model transformations.

The rest of the paper is structured as follows: Section 2 provides the motivation of
this work by discussing concrete examples where such a weaving functionality is use-
ful; Section 3 gives a concise overview of the MTL model transformation language;
Section 4 introduces the MTL weaver, describes the AOP-like extension to MTL for
defining the weaving behavior in MTL-aspects, and presents an example showing
both the input and the output of a concrete weaving; Section 5 draws some
conclusions and presents future work directions.

 “Weaving” MTL Model Transformations 125

2 Motivation

Based on our experience with MTL transformations, we present in this section how
currently applied MTL transformations benefit from the weaving support provided by
the MTL weaver, promoting the separation of concerns paradigm even at the level of
model transformations.

Separation of concerns [10] and modularization are fundamental techniques of
software engineering. Decomposing software into smaller, more manageable and
comprehensible parts, each of which encapsulating and addressing a particular area of
interest, called a concern, is a well-proven method for developing applications that
are easy to configure, adapt, or extend according to changes in the requirements
specification.

Middleware is an essential element in large distributed systems like those that
support enterprise applications and require multiple heterogeneous components to inter-
operate. Moreover, middleware, like software in general, is subject to concerns. Several
concern-dimensions specific to middleware can be grouped into a category called
Middleware Services, as middleware addresses specific concerns of a system, such as
distribution, concurrency, security, or transactions. An extended list of categories that
group several middleware-specific concern-dimensions can be found in [11].

In order to address such middleware services in an MDA fashion and following the
separation of concerns principle, we defined the Enterprise Fondue software develop-
ment method [12]. As an integral part of the Enterprise Fondue method, we propose
several MDA-oriented UML profiles that address middleware-specific concerns at
different levels of abstraction. MTL transformations are used to incrementally refine
existing design models (within the same or between different MDA-levels) along
middleware-specific concern-dimensions according to the proposed UML profiles. A
complete example of applying the Enterprise Fondue method for addressing the
distribution concern was presented in [13], where we considered CORBA [14] as our
target implementation technology. The UML-D Profiles proposed in [13] address the
distribution concern at three different MDA-levels of abstraction: platform-
independent level (the DistributionProfile), abstract realization level (the
AbstractDistributionRealizationProfile), and concrete realization level
(the CORBADistributionRealizationProfile).

Based on the support provided by the MTL weaver, we refactored the MTL trans-
formation that refined application designs along the distribution concern-dimension
according to the DistributionProfile (as promoted by the Enterprise Fondue
method). Instead of one big model transformation that performed the entire
refinement, we have now a standard MTL transformation that performs the copy of
an input model to an output model, both models being compliant with the same UML
metamodel, and a very small MTL-aspect that defines the weaving behavior
according to the DistributionProfile that has to be applied. The MTL-Copy
transformation and the MTL1-D-Aspect are now fully separated from each other,
just as they should be, since they address totally different concerns. Figure 1a
sketches the refinement process in the presence of the MTL1-D-Aspect, or more

126 R. Silaghi, F. Fondement, and A. Strohmeier

Fig. 1. Refining along the Distribution, RMI-Technology, and Java-Language Concern-
Dimensions

generally in the presence of MTL-aspects. Its name, MTL1-D-Aspect, was chosen in
accordance with the MTL1-D transformation defined in [13] for refining along the
distribution concern-dimension. The MTL-Distribution-Copy transformation is
the result produced by the weaver when modifying the MTL-Copy transformation
according to the weaving directives defined in the MTL1-D-Aspect.

A more complex example is shown in Figure 1b, where the metamodel of the input
and output models changes; we move from a UML model to a Java model that repre-
sents the concrete Java implementation. Considering as input the output model of the
previous refinement process, we refine this time along the RMI-technology [15] and
Java-language concern-dimensions as defined by the Enterprise Fondue method.
While the MTL-UML2Java transformation deals with translating any UML model to
its correspondent Java model (relying on their respective metamodels), the MTL22-D-
Aspect addresses how distribution specific elements in the UML model are
translated into their Java model counterparts when employing RMI as their
implementation technology. For instance, interfaces marked as «Distributed» in
the UML model will extend java.rmi.Remote in the Java model; similarly, the
class of the object marked as «Servant» will extend java.rmi.server.
UnicastRemoteObject in the Java model, and so on. Once again, the name,

UML Metamodel UML Metamodel Java Metamodel

MTL-RMI-UML2Java
: MTL-UML2Java

(with Distribution for RMI)

MTL-Distribution-Copy
: MTL-Copy

(with Distribution)

MTL
Transformation

Definition

MTL
Transformation

Application

MTL-UML2JavaMTL-Copy

UML Model with
Distribution ElementsUML Model

Java Model with
Distribution Elements

for RMI

MTL1-D-Aspect

UML Profile
for

Distribution

UML Profile for
RMI

Distribution Realization

configuration

configuration

MTL22-D-Aspect
«conform» «conform» «conform»

«merge»

«weave in» «weave in»

UML Profile for
Abstract

Distribution Realization

«merge»

«apply»

«apply»

a. Distribution b. RMI and Java

 “Weaving” MTL Model Transformations 127

MTL22-D-Aspect, was chosen in accordance with the MTL22-D transformation
defined in [13] even though we considered this time another technology, i.e., we have
chosen RMI instead of CORBA. The MTL-RMI-UML2Java transformation is the
result produced by the weaver when modifying the MTL-UML2Java transformation
according to the weaving directives defined in the MTL22-D-Aspect.

As can be seen in Figure 1, the support provided by the MTL weaver has enabled us
to modularize the different concerns in stand-alone units of encapsulation represented
by MTL-aspects. In this way, we give transformation developers not only the possi-
bility, but also the means to rely on the well-proven power of separation of concerns
even at the model transformation level. Moreover, the size of such MTL-aspects is
very small, compared to the corresponding implementation in the initial MTL
transformations, since they rely on the MTL weaver which is now the one carrying all
the burden of the weaving. The example presented in Figure 1a is reconsidered in
section 4.2, where we discuss in more details its complete implementation.

Besides encapsulating middleware-specific concerns into MTL-aspects as present-
ed in this section, the number of possible usages of such MTL-aspects is unlimited
since the support provided by the MTL language enables us to implement almost
anything in the MTL weaver, and thus, the expressiveness power that could be
provided to transformation developers through the MTL extension syntax may be
very broad, covering all possible and impossible needs that developers may think of.

3 The Model Transformation Language (MTL)

This section provides a concise overview of the MTL transformation language
focusing mainly on the concepts that are relevant in the context of this paper. Readers
that are familiar with the MTL language may skip this section and jump directly to
section 4 which presents the MTL weaver.

Many different solutions have been proposed for model transformation languages,
making it very hard for the OMG to merge all ideas into one future standard. Unfortu-
nately, standards of the future are not solutions to problems of today. The idea of the
INRIA Model Transformation Language (MTL) [6] is to provide all model
transformation facilities, including the possibility to transform MTL transformations.
This makes it possible for the future QVT language standard to be mapped to an MTL
transformation by means of an MTL transformation. This pivot approach has already
been validated. The MTL itself is developed according to a bootstrap approach: a
simple language, called BasicMTL [16], provides the most important facilities, such
as classes or attributes, and new facilities are added by extending the abstract syntax
and by making a transformation from the extended to the initial syntax, always
relying therefore on the small “kernel” of BasicMTL. As an example, associations
between classes have been added in this way. Moreover, the plan is to transform, or in
other words, to compile the Atlas Transformation Language [17] into an MTL
transformation. As a conclusion, MTL aims more at motorizing model
transformations than proposing a new standard.

As suggested just before, MTL is an object-oriented imperative language for model
transformations. Therefore, MTL transformations are defined as programs in terms of
classes, methods, attributes, etc. In order not to confuse these MTL constructs with

128 R. Silaghi, F. Fondement, and A. Strohmeier

the ones that the manipulated model may contain, we will further on refer to them as
MTL classes, MTL methods, MTL attributes, and so on. A special entry point, the
main method, has to be defined for each MTL transformation. Pieces of MTL
transformations are organized in MTL libraries, each library being in addition
responsible for holding models. Each such model can either be a collection of
instances of MTL classes from an MTL library, or a collection of model elements
inside a repository.

MTL is a compiled language; Figure 2 presents the compilation process. In order to
compile an MTL transformation T described in an mtl file, the first step is to parse it.
A parser reads the transformation as text and transforms it into an internal model
that is compliant with the abstract syntax of MTL [16]. In the next step, a type
checker refines this model by adding information about types. For instance, in
order to deal with polymorphism, the type checker will perform the analysis of MTL
methods in order to reference, for each of them, other MTL methods that they are
overriding. If necessary, the types used by the transformation T might need to be
referred (by the type checker) from already compiled MTL libraries. For example, the
MTL standard library, which defines the MTL predefined types and operations, is
typically used by all MTL transformations, and thus, it participates in such library-
usage dependencies. In order for the MTL transformation T to be reused by other
MTL transformations, its internal model, decorated with type information, is stored in
a binary file (T.tll). In the end, a code generation step is performed . Java
source files that implement the behavior described by the internal (refined) model of
the MTL transformation T are generated, and they will make use of the model
repositories on which the implemented transformation was defined to act. We used
two * signs in Figure 2 in order to show that many precompiled libraries (*.tll) may
be needed, on one hand, and several Java source files (*.java) may be generated, on
the other hand, for one single MTL transformation. If transformation T relies on other
libraries, the generated Java source files for T will require the Java source files that
resulted from the compilation of those libraries.

The entire compilation process relies on the model of the MTL transformation T it-
self, which complies with the well-defined MTL metamodel. Therefore, steps ,
and can be viewed as special transformations acting on the MTL model of the

Fig. 2. The MTL Compilation Process

«conform»

*.tll
Precompiled

libraries

*.tll
Precompiled

libraries

T.mtl
library

T.mtl
library

T.tll
Precompiled

library

T.tll
Precompiled

library

T*.java
Generated java
transformation

T*.java
Generated java
transformation

JMI Model Repository
« metamodel »

AS-MTL
« metamodel »

AS-MTL

TT

Parser Code
Generator

Type
Checker

MTL Compiler

 “Weaving” MTL Model Transformations 129

transformation T itself. Besides these three steps, it is at this MTL model level of the
MTL transformations that new special transformations may be defined in order to
change the very behavior of those MTL transformations. Following this idea, our
MTL weaver is indeed implemented as such a special transformation, acting on the
MTL models of the MTL transformations and transforming them according to the
weaving behavior defined in MTL-aspects, as we will see in section 4.

4 The MTL Weaver

Reusability has always been an important concern in the software development
industry because of its potential to reduce the cost of software development. During
the last decade, different levels of reuse have been proposed, such as functions,
procedures, classes, components, aspects, or even entire models. But how can we
achieve the reuse of model transformations? How to adapt existing model
transformations that successfully fulfill most of our needs?

The reuse of MTL transformations is currently promoted at the level of MTL
libraries, which are some kind of light model transformation components. In this
section, we present some implementation details and the facilities provided by an
aspect-oriented support that allow transformation developers to reuse existing MTL
transformations and to easily adapt them in order to address new needs, or concerns,
that the application under development has to incorporate. The main concepts of the
MTL weaver are introduced along with the AOP-like extension to MTL for defining
the weaving behavior in MTL-aspects. We also present an example showing both the
input and the output of a concrete weaving.

The standard MTL language already provides support for transformation develop-
ers to define MTL transformations that transform other MTL transformations.
However, writing such “reflective” MTL transformations still requires transformation
developers to be familiar with the metamodel of the MTL language itself, a
requirement that significantly reduces the number of such developers. In order to
overcome this impediment for the MTL language, we propose a solution inspired by
AOP approaches. We have designed and implemented an MTL weaver that modifies
MTL transformations according to some weaving behavior that is specified in terms
of weaving directives modularized in special stand-alone MTL transformation
encapsulation units called MTL-aspects. Like in AspectJ, which is an aspect-oriented
extension to Java, the syntax defining the weaving behavior in MTL-aspects is a small
AOP-like extension to the MTL language itself. In this way, relying on a few high-
level AOP-like but MTL-based constructs for defining the weaving behavior, average
MTL transformation developers should not have any problems using this MTL
extension straightforwardly for defining their “reflective” model transformations.

The place of the MTL weaver in the MTL compilation process and the evolution of
the MTL weaving process are presented in Figure 3, where the MTL transformation T
is refined according to the weaving directives defined in the MTL-aspect A. The
weaving process is very similar to the compilation process presented in Figure 2.
First, both T and A are parsed in order to transform the two text files into internal
MTL models compliant with the MTL metamodel. The important change comes next,
when the MTL Weaver reads the two internal models of T and A, and produces a

130 R. Silaghi, F. Fondement, and A. Strohmeier

Fig. 3. The MTL Weaving Process

new model instance (of the MTL metamodel) for the new MTL transformation T+A,
which represents the result of modifying T according to the weaving directives
defined in A. Even though it is not explicitly shown in Figure 3, the MTL weaver
itself is implemented as an MTL transformation as well. Once this weaving step is
finished, the normal compilation process can continue with the type checking step

, which produces a reusable precompiled MTL library, and the code generation
step , which produces Java source files. One may notice that the weaving process
results in a completely new MTL transformation, without making any changes to the
original MTL transformation T. In this way, both transformations can independently
be reused later on in order to transform application models. Moreover, the MTL-
aspect A may be reused as well for refining other MTL transformations according to
the same weaving directives.

4.1 MTL-Based Syntax for Describing the Weaving Behavior

There are two major requirements that an MTL-aspect must fulfill. First, it must
clearly identify where the modifications have to be performed, and second, it must
clearly define what are those modifications. In AOP terminology, a join point is a
well-defined point in the execution of a program where additional functionality may
be “injected”. To identify such points in our weaving process, a pattern matching
mechanism is used based on the names of the MTL libraries, MTL classes, MTL
methods, etc. Both requirements can be expressed using the MTL syntax, relying on
small extensions that are detailed in this section.

One of the extension mechanisms proposed by the MTL language is the tagging
facility. Tags are key/value pairs associated either with an MTL library, an MTL
class, or an MTL method. Since tags are part of the MTL metamodel, once they are
analyzed by the MTL parser, they populate the internal MTL model representing
the MTL transformation. This makes it possible for the MTL weaver presented in
Figure 3 to access these tags and to use them for very different purposes. Since
MTL-aspects only rely on the tag extension mechanism to define additional weaving
directives, it is possible to use the same parser for reading both MTL-aspects and
MTL transformations, as shown in Figure 3 .

In order to give an example of an MTL-aspect that could play the role of A in
Figure 3, we show in Figure 4 some snippets of the MTL1-D-Aspect. For the sake of

MTL
Weaver

Parser

Parser

T.mtl
library

T.mtl
library

A.mtl
library

A.mtl
library Type

Checker

Code
Generator

T+A.tll
Precompiled

library

T+A.tll
Precompiled

library

T+A*.java
Generated java
transformation

T+A*.java
Generated java
transformation

MTL
Transformation

T

MTL-Aspect
A

MTL
Transformation

T+A

MTL
Weaver

Parser

Parser

T.mtl
library

T.mtl
library

A.mtl
library

A.mtl
library Type

Checker

Code
Generator

T+A.tll
Precompiled

library

T+A.tll
Precompiled

library

T+A*.java
Generated java
transformation

T+A*.java
Generated java
transformation

MTL
Transformation

T

MTL
Transformation

T

MTL-Aspect
A

MTL-Aspect
A

MTL
Transformation

T+A

MTL
Transformation

T+A

 “Weaving” MTL Model Transformations 131

readability, we will further on refer to the MTL library taken as input for the weaving
process as input library, i.e., the library that plays the role of T in Figure 3, and its ele-
ments as input classes, input methods, etc. The MTL library produced as a result of
the weaving process, T+A in Figure 3, will further on be referred to as output library,
and its elements as output classes, output methods, etc.

Each line in Figure 4 may be considered as a weaving directive for the MTL
weaver. For instance, the first line defines the name of the input library in which the
MTL1-D-Aspect will have to be weaved, i.e., Copy. In order not to alter the Copy
input library during the weaving process and to avoid name clashes between input and
output libraries, the name of the output library has to be provided. This can be
achieved by defining a tag on the MTL library of the MTL-aspect. We have named
this tag rename, and its value represents the name of the MTL library produced as a
result of the weaving process, e.g., Distribution in this particular case.

By default, elements of the input library will be simply reproduced in the output
library. However, this simple reproduction can be tuned by the rest of the MTL-
aspect. For instance, in Figure 4 , the MTL class Copier is defined. This weaving
directive indicates to the MTL weaver that if a class with the same name exists in the
input library, then the reproduced class in the output library contains both the
members in the input class and the ones defined in the MTL-aspect class. This process
is called class merge. On the other hand, if such a class does not exist in the input
library, then it will simply be added to the output library exactly as defined in the
MTL-aspect, i.e., it will include all member definitions defined by the MTL-aspect,
e.g., the servantI terfaceName MTL attribute and the initDI MTL method.

A conflict may appear during a class merge if some members in the matching input
classes and in the MTL-aspect class have the same name. If the member in the MTL-
aspect is an attribute, it will be added as it is, without worrying whether the name of
the attribute already exists in the input MTL library, since the rest of the compilation
process will detect such a duplicate attribute, if any, and an error will be thrown. For
methods, the detected conflict is registered to be solved later.

library Copy;
tag rename := specialtag [Distribution];

class Copier {
servantI terfaceName : Standard::String;

initDI(sin : Standard::String) : Copier {
 self.servantI terfaceName := sin;
 return self;
 }
}

class [{Copier$}] {
 [{^getTarget(.*)}](theSource : Standard::ModelElement)
 tag merge := specialtag [Append];
 tag refactorParameters := booleantag true; {
 theSource.toOut();
 }
}

Fig. 4. Snippets of the MTL1-D-Aspect

n

n

n

132 R. Silaghi, F. Fondement, and A. Strohmeier

MTL-aspect developers may refer to many MTL classes or MTL methods in a
single pattern by relying on “wildcard” facilities, such as an underscore “_”, which
matches any name, or more sophisticated regular expressions delimited by curly
brackets. For instance, in Figure 4 , the class named {Copier$}, matches all input
classes whose names end (denoted by $) with “Copier”, and its method
{^getTarget(.*)} matches all input methods, defined on the matched input classes,
whose names start (denoted by ^) with “getTarget”. However, it would be considered
an abuse to use such constructs for adding new classes or methods to the output library.

The class merge process, as it is implemented in the MTL weaver, is shown in
Figure 5. The libClass represents the input class, and the behaviorClass
represents the MTL-aspect class. Please note that the name of the behaviorClass
matches the name of the libClass as a precondition for the mergeClass method.

A method conflict may be solved according to some predefined rules. We have
identified three kinds of possible rules that prescribe the MTL weaver how to manage
the instructions defined by the conflicting method of the MTL-aspect:

• add MTL-aspect instructions at the very beginning of the output method,
• add MTL-aspect instructions just before returning from the output method, or
• replace input instructions with MTL-aspect instructions in the output method.

It is the responsibility of the MTL-aspect developer to indicate which alternative
she desires to be chosen for a given method conflict. For this purpose, we defined the
merge tag that has to be added to each conflicting method in the MTL-aspect. The
three possible values corresponding to the previously described rules are Prepend,
Append, and Replace respectively. If a conflict cannot be solved, the weaving
process ends in failure.

Fig. 5. MTL Weaver Snippets for Class Merge (mergeClass)

mergeClass(libClass : BasicMtlASTView::UserClass;
 behaviorClass : BasicMtlASTView::UserClass) {
 lo : Standard::Set;
// adding attributes

 if (isNull(behaviorClass.definedAttributes).not()) {
foreach (at : BasicMtlASTView::Attribute)in (behaviorClass.definedAttributes) {

 libClass.appendDefinedAttributes(at);
 }
 }
// merging operations
foreach (bo : BasicMtlASTView::Operation) in (behaviorClass.definedMethods) {

 lo := matchingOperations(libClass, bo);
 if (lo.size().[=](0)) { // to be added
 if (self.canAdd(bo)) {
 libClass.appendDefinedMethods(bo);
 } else {
 bo.name.concat(' seems to be a pattern; no correspondance found.').toOut();
 'ignoring addition to class '.concat(libClass.name).toOut();
 }
 } else { // conflict, to be treated later
 self.operationConflicts := operationConflicts.including(
 new OperationConflict().init(libClass, lo, bo));
 }
 }
}

 “Weaving” MTL Model Transformations 133

The instructions in the MTL-aspect method may need to refer to some parameters
of the matched input methods. The presence of the boolean tag refactor
Parameters set to true makes such parameters accessible inside the MTL-aspect
according to the names provided in the MTL-aspect method. Moreover, this tag
requests the method matching mechanism to take into account the number of
parameters of the input methods rather than just matching the names of the methods.

As an example, Figure 4 states that for all input methods whose names start
with “getTarget” inside classes whose names end with “Copier”, the first parameter,
named in the MTL-aspect theSource, must be sent to the console by means of the
MTL predefined operation toOut. This output must be performed before returning
from the modified MTL methods, as stated by the value Append of the merge tag
defined for the MTL-aspect method.

As a summary, the list of possible tags that may appear in the definition of an
MTL-aspect is provided in Table 1. The first column gives the name of the tag as it
must appear in the MTL-aspect. The second column indicates on which MTL element
this tag may be defined. The third column indicates whether the presence of the tag is
mandatory or optional; default values are indicated for optional tags. The fourth
column gives a brief description of the semantics of the possible associated values.

As we showed on some concrete examples, the MTL-aspect developer does not
need to have a deep knowledge of the MTL metamodel and its semantics in order to
transform an MTL transformation. All s/he needs to know is the MTL syntax and
some predefined tags. Moreover, with the current implementation of the MTL
weaver, an MTL-aspect is about 10 times smaller (in lines of code) and about 50

Table 1. Predefined MTL-Aspect Tags

Base
Tag Name MTL Presence Description

Element

rename Library mandatory The name of the output library.

merge Method mandatory if
conflict

Prepend to add instructions at the
very beginning of the method.

 Append to add instructions just
before returning from the method.

 Replace to replace initial
instructions with MTL-aspect
instructions.

refactorPa-
rameters

Method optional;
default value
is false

Indicates if the number of parameters
has to be taken into account by the
pattern matching mechanism, and if
parameters have to be intercepted for
further usage inside the instructions
of the MTL-aspect.

134 R. Silaghi, F. Fondement, and A. Strohmeier

times faster to develop than a standard MTL transformation that would achieve the
same weaving behavior on another MTL transformation.

Please notice, however, that the MTL weaver and the aspect-oriented support
provided are relatively young, still undergoing refinement and improvement as we
move along. New constructs will be added in order to address MTL-aspect developer
needs and to facilitate as much as possible the development of “reflective” MTL
transformations. For instance, it would be very helpful to have a pattern matching
mechanism for instructions or expressions, e.g., matching all calls to a given method.
The pattern we adopted for extending the MTL language with AOP-like constructs
will remain nevertheless the same, i.e., extending the language by providing new tags
that change the semantics of their base element, just like UML profiles extend the
UML.

4.2 Running Example

In this part, we consider weaving the MTL1-D-Aspect in the simple MTL Copy
transformation in order to modify its behavior and make a system distributed by
applying the stereotypes defined in the DistributionProfile [13] according to
some configuration information. Since the goal is to illustrate the most important
principles of the weaving process, we focus on very small parts of the example.

The input MTL Copy transformation is specialized in copying an input UML 1.4
model to an output UML 1.4 model. Snippets of the transformation are presented in
Figure 6. The transformation is located in the MTL library Copy, having two
variables, in and out, for referring to the input, and output models respectively. One
of the MTL classes of this library is Copier, which defines the getTarget method.
This method takes as parameter a UML element srcElt from the in model, and
retrieves and returns the corresponding UML element inside the out model. Another
MTL class, extending Copier, is UML14CreatorCopier, which defines the

library Copy;
model in : RepositoryModel; // should be a UML1.4 MetaModel
model out : RepositoryModel; // should be a UML1.4 MetaModel
class Copier {
getTarget(srcElt : in::Core::Element) : out::Core::Element {

 r : out::Core::Element;
 ... // compute r
 return r;
 }
}
class UML14CreatorCopier extends Copier {
getTargetClass(src : in::Core::Class) : out::Core::Class {

 r : out::Core::Class;
 r := new out::Core::Class();
 trace(src, r);
 return r;
 }
}

Fig. 6. Snippets of the Copy Input Library

 “Weaving” MTL Model Transformations 135

getTargetClass method. This method takes a UML class src in the in model as
parameter, and is responsible for creating and returning a UML class in the out model.

We present now two of the modifications that have to be performed in order for the
MTL Copy transformation to make a system distributed. The first one is to make an
interface remotely available, but before doing this we first need to identify the right
interface. The solution we considered is to add an attribute, servantI terfaceName,
to the MTL Copier class as a placeholder for the name of the interface to be
distributed. This attribute is transmitted to the MTL Copier class by means of the
new method initDI defined in the MTL1-D-Aspect. The second modification is to
display on the console the UML elements from the in model for which a
correspondence in the out model has been requested. A thorough analysis of the
complete MTL Copy transformation would clarify that such correspondences are only
requested when invoking methods whose names start with “getTarget”, and which
belong to a class whose name ends with “Copier”. These modifications are prescribed
in the MTL1-D-Aspect that was partly presented in Figure 4, where part
corresponded to the first modification, and part to the second one.

The result of weaving the MTL1-D-Aspect in the MTL Copy transformation is
shown in Figure 7. Even though we have clearly stated in section 4 that the results of
the MTL weaving process are just MTL binaries and Java source files, Figure 7 repre-
sents what a pretty printer would produce for the MTL binary. Changes introduced by
the MTL-aspect are highlighted by change bars. Since the output MTL library is
different from the original MTL Copy library, renaming has occurred according to the
rename tag that was specified on the library definition inside the MTL1-D-Aspect,
as shown in Figure 4.

Part of the MTL1-D-Aspect in Figure 4 states that an MTL class named
Copier must appear with a servantI terfaceName attribute and an initDI
operation in the output library. Even though such an MTL Copier class already
exists in the input library, no name conflicts have been found, and therefore member
definitions from both the MTL-aspect and the input class are directly added to the
MTL Copier output class, as shown by Figure 7 .

The MTL-aspect method defined in part of the MTL1-D-Aspect in Figure 4
matches the input methods Copier::getTarget and UML14CreatorCopier::
getTargetClass. One may note that the presence of the refactorParameters tag
set to true in the MTL-aspect has forced the method matching mechanism to check
that only one parameter is defined for these input methods, a parameter that will
further on be used as the variable theSource inside the body of the MTL-aspect
method. The tag merge set to Append defined on the MTL-aspect method indicates
how possible conflicts should be solved. Since conflicts have indeed been found, the
instructions defined in the MTL-aspect have to be inserted in the output class in such
a way that they are executed just before returning from the corresponding
reproductions of the input methods in the output class, as part of the output library. To
achieve this, we rely on the MTL try-catch-finally statement: instructions of the
input method are reproduced in the try part, and instructions from the MTL-aspect
method are reproduced in the finally part, as shown in Figure 7 . In this way, we
enforce that instructions from the MTL-aspect method are executed just before

n

n

136 R. Silaghi, F. Fondement, and A. Strohmeier

returning from the output method, wherever an MTL return instruction may appear
in the input method. The true value for the refactorParameters tag also instructs
the MTL weaver to produce new variables in the output methods according to the
parameters defined in the MTL-aspect method that are supposed to match parameters
from the input methods. These new variables represent placeholders for the values of
the parameters of the input methods that were intercepted by the corresponding MTL-
aspect method. Applying this rule to the two input methods matching the MTL-aspect
method {^getTarget(.*)}, new theSource variables will be added in the
corresponding output methods for storing the very input parameters that were
previously matched (see Figure 7 [*]).

5 Conclusions and Future Work

All model transformation languages that we know of provide transformation
developers with the facility to define “reflective” model transformations, i.e., model

library Distribution;
model in : RepositoryModel; // should be a UML1.4 MetaModel
model out : RepositoryModel; // should be a UML1.4 MetaModel
class Copier {
servantI terfaceName : Standard::String;
initDI(sin : Standard::String) : Copier {

 self.servantI terfaceName := sin;
 return self;
 }
getTarget(srcElt : in::Core::Element) : out::Core::Element {

 r : out::Core::Element;
 theSource : Standard::ModelElement;

theSource := srcElt; // [*]
 try {
 ... // compute r
 return r;
 } finally {
 theSource.toOut(); // [*]
 }
 }
}
class UML14CreatorCopier extends Copier {
getTargetClass(src : in::Core::Class) : out::Core::Class {
theSource : Standard::ModelElement;
theSource := src; // [*]

 try {
 r : out::Core::Class;
 r := new out::Core::Class();
 trace(src, r);
 return r;
 } finally {
 theSource.toOut(); // [*]
 }
 }
}

Fig. 7. Snippets of the Distribution Output Library

n

n

 “Weaving” MTL Model Transformations 137

transformations that transform other model transformations. However, writing such
model transformations is generally beyond the ability of transformation developers
since it requires the developer to be familiar with the metamodel of the transformation
language itself. In order to overcome this frustrating impediment for the INRIA MTL
transformation language, we presented in this paper an MTL weaver that modifies
MTL transformations according to some weaving behavior that is specified as a
special kind of MTL transformations, called MTL-aspects. Inspired from the AOP
world in general, and from AspectJ in particular, the syntax defining the weaving
behavior in MTL-aspects is a small AOP-like extension to the concrete syntax of the
MTL language itself. In this way, relying on a few high-level AOP-like but MTL-
based constructs for defining the weaving behavior, average MTL transformation
developers should not have any problems using this MTL extension straightforwardly
in order to define their “reflective” model transformations.

The support provided by the MTL weaver through the MTL extension syntax was
illustrated on a concrete example, namely modularizing the distribution concern in
stand-alone units of encapsulation represented by MTL-aspects. We have shown in
this way that transformation developers are given not only the possibility, but also the
means to rely on the well-proven power of separation of concerns even at the model
transformation level.

Even though our research was carried out for the INRIA MTL transformation lan-
guage, most of the concepts presented in this paper are MTL independent and could
easily be applied to the future QVT specification language by providing higher level
constructs for specifying the weaving behavior. For example, we can very well
imagine the MTL1-D-Aspect be written at the QVT specification level, and then
automatically refine it for the MTL language when applying it in the context of MTL-
based projects. Although the constructs introduced in this paper are very suitable for
imperative model transformation languages (e.g., “before method return” or
“after call”), we believe that similar counterparts may be identified in declarative
model transformation languages as well (e.g., “after rule match”), and thus a
common ground could be found at the QVT specification level.

References

[1] Object Management Group, Inc.: Model Driven Architecture. http://www.omg.org/
mda/, September 2004.

[2] Miller, J.; Mukerji, J.: Model Driven Architecture (MDA). Object Management Group,
Document ormsc/2001-07-01, July 2001.

[3] Object Management Group, Inc., http://www.omg.org/, September 2004.
[4] Sendall, S.; Kozaczynski, W.: Model Transformation – the Heart and Soul of Model-

Driven Soft ware Development. IEEE Software, 20(5), Special Issue on Model-Driven
Development, 2003, pp. 42 – 45. An extended version is available as Technical Report,
EPFL-IC-LGL N° IC/2003/52, July 2003.

[5] Object Management Group, Inc.: MOF 2.0 Query/Views/Transformations RFP.
Document ad/02-04-10, April 2002.

[6] French National Institute for Research in Computer Science and Control (INRIA): Model
Transfor mation Language (MTL). http://modelware.inria.fr/, September 2004.

138 R. Silaghi, F. Fondement, and A. Strohmeier

[7] Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C. V.; Loingtier, J.-M.;
Irwin, J.: As- pect-Oriented Programming. Proceedings of the 11th European Conference
on Object-Oriented Programming, ECOOP, Jyväskylä, Finland, June 9-13, 1997. LNCS
Vol. 1241, Springer-Verlag, 1997, pp. 220 – 242.

[8] Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold, W. G.: An
Overview of AspectJ. Proceedings of the 15th European Conference on Object-Oriented
Programming, ECOOP, Budapest, Hungary, June 18-22, 2001. LNCS Vol. 2072,
Springer-Verlag, 2001, pp. 327 – 353.

[9] Eclipse Project: AspectJ. http://www.eclipse.org/aspectj/, September 2004.
[10] Parnas, D. L.: On the Criteria to be used in Decomposing Systems into Modules.

Communications of the ACM, 15(12), December 1972, pp. 1053 – 1058.
[11] Rouvellou, I.; Sutton, S. M. Jr.; Tai, S.: Multidimensional Separation of Concerns in

Middleware. Second Workshop on Multi-Dimensional Separation of Concerns in
Software Engineering, held at the International Conference on Software Engineering,
ICSE, Limerick, Ireland, June 4-11, 2000. http://www.research.ibm.com/

hyperspace/workshops/icse2000/.
[12] Silaghi, R.; Strohmeier, A.: Integrating CBSE, SoC, MDA, and AOP in a Software

Development Method. Proceedings of the 7th IEEE International Enterprise Distributed
Object Computing Con ference, EDOC, Brisbane, Queensland, Australia, September 16-
19, 2003. IEEE Computer Society, 2003, pp. 136 – 146. Also available as Technical
Report, N° IC/2003/57, Swiss Federal Institute of Technology in Lausanne, Switzerland,
September 2003.

[13] Silaghi, R.; Fondement, F.; Strohmeier, A.: Towards an MDA-Oriented UML Profile for
Distribution. Proceedings of the 8th IEEE International Enterprise Distributed Object
Computing Conference, EDOC, Monterey, CA, USA, September 20-24, 2004. IEEE
Computer Society, 2004, pp. 227 – 239. Also available as Technical Report, N°
IC/2004/49, Swiss Federal Institute of Technology in Lausanne, Switzerland, May 2004.

[14] Object Management Group, Inc.: Common Object Request Broker Architecture: Core
Specification, v3.0.3, March 2004.

[15] Sun Microsystems, Inc.: Java Remote Method Invocation Specification. Revision 1.7,
Java 2 SDK, Standard Edition, v1.3.0, December 1999. http://java.sun.com/j2se/
1.3/docs/guide/rmi/, September 2004.

[16] Vojtisek, D.: BasicMTL Realization Guide. Inside the Carroll Research Program and part
of the MOTOR project, Technical Report, February 2004. http://modelware.inria.
fr/article.php3?id_article=45, September 2004.

[17] Bézivin, J.; Dupé, G.; Jouault, F.; Pitette, G.; Rougui, J. E.: First Experiments with the
ATL Model Transformation Language: Transforming XSLT into XQuery. Second
International Workshop on Generative Techniques in the Context of MDA, held at the
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA, Anaheim, CA, USA, October 26-30, 2003.

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 139 – 158, 2005.
© Springer-Verlag Berlin Heidelberg 2005

MISTRAL: A Language for Model Transformations
in the MOF Meta-modeling Architecture

Ivan Kurtev and Klaas van den Berg

Software Engineering Group, University of Twente, P.O. Box 217,
7500 AE, Enschede, The Netherlands

{kurtev, vdberg}@cs.utwente.nl

Abstract. In the Meta Object Facility (MOF) meta-modeling architecture a
number of model transformation scenarios can be identified. It could be ex-
pected that a meta-modeling architecture will be accompanied by a transforma-
tion technology supporting the model transformation scenarios in a uniform
way. Despite the fact that current transformation languages have similarities
they are usually focused only on a particular scenario. In this paper we analyze
the problems that prevent the usage of a single language for different transfor-
mation scenarios. The problems are rooted in the current organization of the
MOF architecture and especially in its inability to define explicitly the mecha-
nisms of instantiation and generalization found in different modeling languages.
This causes a coupling between a transformation language and the instantiation
mechanism specific for a given modeling language. We propose an organization
of the MOF architecture based on a simple and uniform representation of all
model elements no matter at which level they are defined. In this framework,
different instantiation and generalization mechanisms are represented as a set of
functions. We present a transformation language named MISTRAL1 acting in
this framework. Transformation language is separated from the instantiation
and generalization mechanisms specific for a given modeling language.

1 Introduction

A key element of the MDA (Model Driven Architecture) [11] is the notion of model
transformation. A model transformation is a process of generation of a target model
from a source model. A number of model transformation scenarios can be identified
in current OMG standards and other publications [14][12][16][10]. Fig. 1 shows four
transformation scenarios in the context of the MOF (Meta Object Facility) meta-
modeling architecture [13].

Fig. 1a shows a scenario with a transformation specified between two MOF meta-
models (UML and Java meta-models). This is the context of the Query/Views/
Transformation (QVT) Request for Proposals issued by OMG [14]. In this context
transformations are specified between models at level M2 and executed on models at
level M1. Fig. 1b shows similar scenario shifted one level down. It involves transfor-

1 MISTRAL stands for Multiple IntenSion TRAnsformation Language. The notion of intension

is regarded as a model of models and is elaborated in [9].

140 I. Kurtev and K. van den Berg

mation execution on data at level M0. The diagram shows a transformation specified
between a concrete DTD (Document Type Definition) and a concrete relational
schema. The execution of the transformation converts an XML document to a rela-
tional database. This scenario is common in data warehousing and is addressed in the
Common Warehouse Metamodel (CWM) [12]. Fig. 1c shows the Data Binding ap-
proach for XML processing [10] from the perspective of the MOF meta-modeling
architecture. In this scenario a transformation is specified at level M2 and executed at
the two lower levels. The execution at level M1 is known as schema compilation. The
correspondence derived between the constructs in the models at level M1 serves as a
specification of the transformation executed at level M0 known as unmarshaling. In
current data binding tools transformation rules applied during unmarshaling are usu-
ally not powerful enough to express the correspondence between an arbitrary schema
and an arbitrary set of application classes. In this respect XML processing can benefit
from the ability of model transformation languages to express complex transforma-
tions [7].

The three scenarios may be regarded as intra-level transformations where input and
output models reside at the same level. In contrast, we regard the scenario in Fig. 1d
as inter-level transformation. Fig. 1d shows two standard mappings in MOF: XML
Metadata Interchange (XMI) [16] and Java Meta-data Interchange (JMI). Both map
the MOF Model (at M3) to a meta-model at M2 (e.g. DTD and Java meta-models).
These transformations are executed on models at level M2 (e.g. the UML meta-
model) and the result is a model at level M1. Furthermore, a UML model at level M1
may be transformed to an XML document or to a set of Java objects residing at level
M0.

Fig. 1. Model transformation scenarios

 MISTRAL: A Language for Model Transformations 141

How do the current model transformation techniques support these scenarios? The
QVT initiative aims at defining a standard transformation language for the first sce-
nario. CWM solves problems in the second scenario for a number of commonly used
data sources. The third scenario is supported by proprietary data binding tools that do
not consider transformations in the context of the MOF architecture. The mappings in
the fourth scenario are described in a semi-formal notation using grammars, templates
and textual descriptions. Although the transformation approaches taken in QVT and
CWM share a number of similar concepts it is not possible to use a single transforma-
tion language for the first two scenarios. In the scenario in Fig. 1c the result of a trans-
formation at level M1 is used to derive a new transformation executed at the lower
level M0. Current model transformation languages do not address the problem of
transformation execution over more than two consecutive levels. Finally, both QVT
and CWM do not consider inter-level transformations.

One would expect that the outlined scenarios are addressed in a uniform way, that
is, the organization of the MOF architecture allows a transformation language to op-
erate on models at any level. The analysis of the current transformation techniques
reveals that the reality is different. In this paper we analyze the problems that prevent
the usage of a single language for all the scenarios. In our opinion the problems are
rooted in the current organization of the MOF architecture and especially its inability
to define explicitly the mechanisms of model instantiation. This causes a coupling
between a transformation language and the instantiation mechanism specific to the
models it operates upon. Apart from the instantiation mechanism, generalization rela-
tions also have an impact on the transformation language concerning selection of
source model elements and the substitutability among values. Different modeling
languages have similar but different semantics of the generalization relation. The
same coupling is observed between a transformation language and a given generaliza-
tion relation.

We propose a framework for the MOF architecture based on a simple and uniform
representation of all the model elements no matter at which level they are defined.
The framework does not introduce changes to any MOF-related standard. MOF, UML
and other languages may be imported in it. In this framework the instantiation and
generalization mechanisms are defined explicitly. We present a transformation lan-
guage separated from the instantiation and generalization mechanisms specific for a
given model. If a transformation is defined between two models the transformation
engine is configured with the definitions of the corresponding instantiation and gener-
alization relations. Thus, the language is decoupled from these relations and is able to
express transformations between models at arbitrary level.

The paper is organized as follows. Section 2 gives detailed description of the
problems we want to tackle. Section 3 describes our approach for representing model
elements in the MOF architecture and how models are extended with additional
information and used in the context of our transformation language. Section 4 pre-
sents the transformation language. Section 5 shows an example specification of an
instantiation mechanism for the relational model. Section 6 analyses related work and
section 7 gives the conclusions.

142 I. Kurtev and K. van den Berg

2 Problem Statement

The languages proposed as an answer to the QVT RFP are based on the instantiation
mechanism used to create MOF meta-models and models (at level M2 and M1 respec-
tively). A transformation selects instances of MOF classes in a source model at level
M1 and produces instances in a target model at the same level. The definition of a
transformation language that transforms models at level M1 is possible because all
model elements conform to the MOF semantics. It defines which constructs at level
M2 may be instantiated (instances of MOF Classifier that are not abstract) and the
structure of these instances (having identity, slots and links). The specification also
defines the meaning of the generalization relation: how features from a super-class are
inherited in a sub-class and the rules for type substitutability based on the class hier-
archy. Since the constructs at levels M3, M2 and M1 conform to a common structure
and the models share the same instantiation and generalization mechanism it is possi-
ble to define a language that works on any model at level M1.

The MOF specification, however, does not specify the structure of the instances at
M0 level and how they are related to their meta-constructs at level M1. The in-
stanceOf relation between a construct in M1 and its instances in level M0 may differ
from the instanceOf relation between constructs in M2 and its instances in M1. This
observation has been made in [4] where it is argued that the actual number of levels is
3 instead of the widely accepted view of 4 levels. In fact, a model at level M2 defines
a new language (e.g. UML, CWM, and Java) and that language brings its own defini-
tions of the instantiation and generalization relations. If a transformation is defined
between two user models in M1 then the transformation engine has to identify which
model elements are instantiatable and how the instance values are set. The lack of a
standard way to describe the instantiation mechanism for the model elements at level
M1 prevents the usage of QVT languages for the M0 level.

How does the CWM solve that problem in dealing with a variety of data sources
such as XML, relational, and record-based? It reuses the concepts of classes and in-
stances defined in UML meta-model. A meta-model that would be separately defined
at level M2 is defined as a specialization of the CWM meta-model. Constructs that
specialize Class construct can be instantiated and their instances conform to con-
structs that specialize Object. The problem here is the inability to handle models con-
forming to meta-models at level M2 if the latter are not defined as specializations of
the CWM meta-model.

If a transformation language is capable of transforming models residing at arbitrary
level then it will require a common representation of the model constructs no matter
the level they reside in and a uniform way of treating the different instanceOf and
generalization relations. The discussion above showed that the MOF architecture does
not provide these mechanisms. As a result current transformation languages are cou-
pled with a particular instantiation and a generalization mechanism.

3 Approach

The approach for solving the problems explained in the previous sections is based on
two ideas. First, we represent the model elements in the MOF architecture according

 MISTRAL: A Language for Model Transformations 143

to a simple generic model no matter the level they reside in. We define a transforma-
tion language that operates on instances of that generic model. Second, we consider
four operations that occur in transformations: instantiation of an element from a meta-
construct, querying the structural features of elements for their values, setting values
to the features and selection of source elements on the base of their meta-constructs.
We show how these operations are affected by the instantiation and generalization
mechanisms. The specifics of the mechanisms are encapsulated in the implementation
of a set of functions used by the transformation engine to execute the four operations.
The transformation engine is configured with the implementations of the functions
before executing a transformation. In this way we achieve separation between the
transformation language and the instantiation and generalization mechanisms specific
for a given modeling language.

3.1 Representation of Model Elements

The MOF architecture is viewed as a homogeneous modeling space populated with
model elements. The level at which a model element resides does not affect its repre-
sentation. Every model from the MOF architecture is represented as a set of model
elements instances of a generic model (Fig. 2a).

The generic model is shown in Fig.2b. Every model element has an identity and a
number of named slots. Simple values (strings, numbers, etc.) are instances of Literal.
The concept of slot used here is similar to the concepts with the same name defined in
MOF and UML but we do not require that slots are instantiated from attributes. In our
modeling space slots are used to connect model elements or to hold values repre-
sented by literals. The model in Fig.2b is represented in UML notation only for the
purpose of readability. It is defined outside of the MOF modeling space and can also
be described in some other notation.

In the next sections two examples are given. Section 3.2 shows how the MOF
Model itself is represented as an instance of the generic model. Section 3.3 shows a
relational meta-model that defines the instanceOf relation explicitly.

Fig. 2. Relation of the MOF architecture with the generic model of model elements

144 I. Kurtev and K. van den Berg

3.1 Representation of the MOF Model

As first example we represent a subset of the MOF Model shown in Fig. 3. Primitive
data types and the multiplicity of attributes and association ends are omitted for sim-
plicity. We assume that all the associations are unidirectional.

Fig. 3. Simplified MOF Model

The MOF Model can be represented as an instance of the generic model in Fig. 2b.

Fig. 4. Object diagram for the MOF class ModelElement as instance of the generic model

An object diagram for a part of the representation of the MOF abstract class Mod-
elElement is shown in Fig. 4. The slot named “InstanceOfMOF” indicates the instan-
tiation relation to the MOF Class construct. The following rule is used to represent the
MOF Model: all instances of MOF Class construct and also their instances are repre-
sented as model elements. Instances of attributes and associations are represented as
slots that connect the model elements. For simplicity, instances of associations are
also represented as slots. The concept of Link is not used.

 MISTRAL: A Language for Model Transformations 145

Fig. 5. Concise notation of the MOF Model (Fig. 4) as a graph of generic model elements

In this paper a more concise notation will be used for showing model instances of
the generic model in Fig. 2b. Fig. 5 shows the object diagram in Fig. 4 represented as
a graph of generic model elements. Model elements are shown as rectangles that con-
tain an identifier of the element. Usually this identifier is the value of the slot ‘name’.
Literals are also shown as rectangles containing the value enclosed by quotes. Slots
are represented as arrows labeled with the name of the slot and pointing to the slot
value. A more detailed representation of the MOF Model can be found in [8].

In the MOF Model there is no construct that defines instantiation relations. In our
framework this relation is explicitly represented by a slot. From now on we will refer
to that relation as instanceOfMOF.

3.3 The instanceOf Relation for the Relational Model

As second example we represent a relational model as an instance of the generic
model. Some approaches [2][4] reduce the number of levels in the MOF architecture
to 3 by defining a given meta-model and the model of the M0 instances at the same
level M2. Therefore the models and their instances are situated at level M1 and in-
stantiated with the standard MOF mechanism. The reduction of the levels, however,
does not remove the presence of the second instanceOf relation defined within the
meta-model. The authors of [2] identify the existence of these distinct instanceOf
relations and distinguish between linguistic and ontological instantiations. In our
examples instanceOfMOF relation is the linguistic instantiation whereas the instantia-
tion relation defined for a given modeling language is the ontological instantiation.

Fig. 6. Relational model and its instance model both defined at level M2

146 I. Kurtev and K. van den Berg

Fig. 7. A particular relational schema and relational data both at level M1 represented as
generic model elements

We illustrate how this approach is represented in our framework by modeling
relational databases. A relational model shown in Fig. 6 contains both the model of
relational schemas (classes RelationalSchema, and FieldType) and the model of its
instances (classes Table, Tuple and Field). The model is instantiated through the in-
stanceOfMOF mechanism and one example instance is shown in Fig. 7 following the
notation used for the MOF Model.

The data (the model elements aTuple, f1 and f2) that would reside at level M0 are
now at level M1 and may be queried on the base of the constructs Tuple and Field.
For instance, to access the value of field B one has to write the expression aTu-
ple.field select(name=”B”).value2 that returns ‘true’. A more natural way, however,
is to use the relational schema of the tuple (represented by aSchema model element)
that defines the fields A and B and to write the expression aTuple.B that reflects the
ontological instantiation relation between aTuple and aSchema. This direct querying
is not possible because aTuple does not have slot with name “B” created by the lin-
guistic instanceOfMOF. Therefore, some navigation over the graph should be specified
to access the values of slots implied by the ontological instantiation. The ontological
instanceOf relation is represented by the slots named ‘InstanceOf’ in Fig. 7. They are
created by the linguistic MOF instantiation.

This example illustrates the need that both instantiation mechanisms should be
available. A single model element may conform to more than one meta-construct
through different instanceOf relations that are defined differently and these relations
may be used to query the slots of the model elements. Our framework allows an ex-
plicit representation of more than one instanceOf relation for a given model element,
which lacks in the MOF architecture.

3.4 Operations in Model Transformations

In the introduction we described several transformation scenarios. We assume that a
transformation is executed on an input model and results in an output model. Both
models have meta-models. In this section, we describe four operations observed in

2 Object Constraint Language (OCL) [15] is used to specify the expression.

 MISTRAL: A Language for Model Transformations 147

model transformations: selection of model elements on the base of their meta-
constructs from which the elements are instantiated, instantiating model elements
from a meta-construct, reading a slot value of an element, and setting the value of a
slot. This list is not exhaustive, for instance, deletion of an element and operation
invocation are not included in it. This paper focuses on the four operations mentioned
above. Every operation is affected by the instantiation and generalization mechanisms
specific for a modeling language. For every operation functions are identified and
used to perform each operation. Different languages use different implementations of
these functions.

Selection of Model Elements on the Base of Their Meta-construct. instanceOf
relations are explicitly represented in our framework. They are represented either by a
slot that does not have a defining construct as in the example of the MOF Model or by
a slot instantiated from a construct in a meta-model as in the example of the relational
model. Moreover, because multiple instanceOf relations are possible for a model
element we may select on the base of more than one meta-construct. This helps in
dealing with both linguistic and ontological instantiations.

With every meta-model we associate a function called meta defined over model
elements in the input model. The function returns an element from the meta-model
from which its argument is instantiated:

meta(me: ModelElement): ModelElement

An implementation of that function in the context of the MOF Model will return
the value of the slot instanceOfMOF. In the context of the ontological instantiation in
the relational model the function will return the value of the slot instanceOf (see
Fig. 7). It should be noted that the function is defined only for model elements. We
assume that the information about the meta-constructs used to create slots can be
derived from the instantiation mechanism.

Apart from selection on the base of the meta-construct another form of selection is
possible. In many cases not only the instances of a given meta-construct are selected
but also the instances of its specializations. This selection uses the generalization-
specialization hierarchy in the meta-model. Sometimes there are more than one hier-
archy (e.g. derivation by restriction and extension in XML Schema, extension among
classes and extension among interfaces in Java). To model this situation and to enable
the transformation language to deal with different generalization hierarchies we asso-
ciate every meta-model with a set of named relations representing its generalization
relations. Every relation is associated with a function that for a given element in the
meta-model returns all the specialized elements (direct and indirect):

getSpecializedConstructs(me: ModelElement) : Set of ModelElement

Instantiation of Model Elements from a Meta-construct. Instantiation mechanism
is modeled as a function that takes a construct from a meta-model and produces a
model element with empty slots:

instantiate(meta-construct: ModelElement) : ModelElement

148 I. Kurtev and K. van den Berg

The implementation of that function is influenced by the generalization mechanism
defined for a given meta-model since the generalization mechanism specifies how
features are inherited from a more general construct.

Accessing Slot Values of an Element. The slots of a model element are derived from
its meta-construct based on the instantiation mechanism.

Slots implied by one instantiation mechanism may differ from the slots implied by
other mechanism as in the example of the relational model. The model element, how-
ever, has a single representation conforming to the generic model. Different instantia-
tions would create different representations.

This raises two questions: first, what is the instantiation mechanism used to gener-
ate the representation of a model element and second, if the slots implied by an in-
stantiation are not directly presented how their values are obtained. The answer of the
first question is that one instantiation mechanism is always chosen as default. In our
approach we choose instanceOfMOF as default mechanism (or linguistic instantiation).
To answer the second question we define a translation mechanism that obtains the slot
values of slots implied by a given instantiation different from the default instantiation.
This translation is implemented as a function that takes a model element and the name
of a slot and returns the value of the slot, which is a set of model elements:

getSlotValue(me: ModelElement, slotName: String) : Set of ModelElement

Setting Values of a Slot. This operation is similar to the operation of accessing
values of slots. The same two cases are presented here.

If the slot exists in the representation of the element the value is set directly on the
slot. If the slot comes from an instantiation different from the default instantiation a
translation mechanism is required. Setting the slot value is treated as an in-place
transformation over the model element whose slot is being set. Generalization mecha-
nism affects this operation in respect to the compatibility of the type of the value
being set and the expected type of the value. The rules for type substitutability must
be known when the transformation engine performs type checking of the value.

Two functions are defined to perform this operation. The first function sets the
value of the slot by taking into account how the slot is represented. The second func-
tion checks if two model elements represent compatible types:

setValue(me: ModelElement, slotName: String, slotValue: Set of ModelElement)

isCompatible(expectedType: ModelElement, actualtype: ModelElement): Boolean

In summary, the four operations in model transformations are highly dependent on
the instantiation and generalization mechanisms for a particular modeling language.
We model the information required by the transformation engine to perform these
four operations as a set of functions. Every meta-model provides its own implementa-
tion of these functions. We call the set of these functions a configuration.

Functions in a configuration may be implemented in any language and may be
linked to the transformation engine as an external library. For illustrative purposes we
will show how these functions can be implemented as transformation rules written in
our transformation language. During the execution of a transformation the engine will
invoke these rules. Before giving an example of the implementation of the configura-
tion of the MOF Model and the relational model we will introduce the transformation
language MISTRAL in the next section.

 MISTRAL: A Language for Model Transformations 149

4 Transformation Language MISTRAL

In this section, we describe a transformation language based on the idea of separation
between the transformation language and the instantiation and generalization mecha-
nisms. The language is an extension of the one applied to XML processing described
in [7].

4.1 Overview of the Language

Fig. 8 shows the basic concepts in the transformation environment in which the lan-
guage is used.

Fig. 8. Overall design of the transformation environment

A transformation engine transforms a source model to a target model by executing
a transformation specification. A transformation specification is written in the trans-
formation language being described here and is based on the meta-models of the
source and the target models and the configurations of these meta-models. Source and
target models must be associated to at least one meta-model. This requirement is
always fulfilled since all models conform implicitly to the generic model of the mod-
eling space. The meta-models and their configurations are passed as input to the trans-
formation engine. The engine can only create instances of the constructs in the ge-
neric model, i.e. model elements and slots. The transformation designer, however, can
specify the transformation against the meta-constructs in the meta-models. Based on
the configurations of the meta-models the engine performs the operations analyzed in
the previous section that ultimately result in creating model element and slot instances
in the target.

A transformation specification is a set of rules. There are two types of rules: model
element rules and slot rules. Model element rules create elements in the target model.
Slot rules are used to relate the elements by setting their slot values. Both types of
rules have rule source that selects elements in the source model.

4.2 Example: The Configuration of the MOF Model

The language is presented on the base of an example that implements the configura-
tion functions for the MOF Model. Only two functions are implemented here: instan-

150 I. Kurtev and K. van den Berg

tiate and getSpecializedConstructs. The following 4 model element rules implement
the instantiation mechanism in the MOF Model. The keywords of the language are
shown in bold.

The instantiate model element rule implements the instantiation mechanism for the
MOF Model. It creates a model element from a non-abstract class. Slots are obtained
from the derived sets of attributes and outgoing associations of the class. These sets
contain the attributes and outgoing associations defined in the class and also the inher-
ited ones from its parent. Derived sets are created by the rule DerivedConstructsFor-
Class. We assume that name collisions do not occur. Slots are created by the rules
MOFAttributeToSlot and MOFAssociationToSlot respectively.

instantiate ModelElementRule{
 source [c:Class, condition {c.isAbstract=false}]
 target [instance: ModelElement {slots=slotRulesValue->union(instSlot)},
 instSlot: Slot {name=’instanceOfMOF’, value=c}]
 SlotRules {
 attributeSlots
 source [a:Attribute=target (c, derivedAttributes)]
 target [slots=MOFAttributeToSlot(a)]

 associationSlots
 source [assoc:Association=target(c, derivedAssociations)]
 target [slots=MOFAssociationToSlot(assoc)]
 }
}

DerivedConstructsForClass ModelElementRule{
 source [c: Class link-to(derivedAttributes, derivedAssociations)]
 target [derivedAttributes: Set{elements},
 derivedAssociations: Set{elements}]
 SlotRules {
 ownAttributes
 source [a: Attributes=c.attributes]
 target [derivedAttributes.elements=a]

 attributesFromParent
 target [derivedAttributes.elements]
 alt { source [parent:Class=c.supertype]
 target [derivedAttributes.elements=target(parent, derivedAttributes)] }
 alt { target [derivedAttributes.elements=Set[]] }

 ownAssociations
 source [assoc:Association, condition{assoc.from.type=c}]
 target [derivedAssociations.elements=assoc]

 associationsFromParent
 target [derivedAssociations.elements]
 alt {source [parent:Class=c.supertype]
 target [derivedAssociations.elements=target(parent, derivedAssociations)] }
 alt { target [derivedAssociations.elements=Set[]] }
 }
}

 MISTRAL: A Language for Model Transformations 151

MOFAttributeToSlot ModelElementRule{
 source [a:Attribute]
 target [Slot {name=a.name}]
}

MOFAssociationToSlot ModelElementRule{
 source [assoc:Association]
 target [Slot {name=assoc.to.name}]
}

Fig. 9 illustrates the dependencies among the rules. Rules are shown as ovals and
relations among them are shown as labeled arrows. A rule with an outgoing arrow
obtains values for the variables denoted by the label of the arrow from the rule at
which the arrow is pointing.

Fig. 9. Dependencies among the transformation rules

The following rule creates a set of all the classes that directly or indirectly inherit
from a given class passed as a source of the rule and therefore implements the func-
tion getSpecializedConstructs.

getSpecializedConstructs ModelElementRule{
 source [c: Class]
 target [result: Set{elements=slotRulesValue->union(c)}]

 SlotRules{
 Elements
 source [s: Class, condition{s.supertype=c}]
 target [result.elements=getSpecializedConstructs(s)]
 }
}

This rule is an example of a recursive rule that for a given class determines all di-
rect specializations and makes a union of their specialized constructs.

4.3 Transformation Language Syntax

In this section, we describe the syntax of some important constructs in the transforma-
tion language that were used in the previous example.

152 I. Kurtev and K. van den Berg

Model Element Rules. Model element rules create new elements in the target model
or modify existing ones in the source model.

The creation of new elements is done in two ways: by instantiating the constructs
from the generic model in Fig. 2 and by instantiating some meta-constructs from the
target meta-model. Only the constructs in the generic model can be directly instanti-
ated. When a meta-construct from the target meta-model has to be instantiated the
function instantiate that implements that instantiation is invoked and results in instan-
tiations of the constructs in the generic model.

The syntax of model element rules is specified below in a pseudo EBNF notation.
Non-terminals are in italic.

ruleName ModelElementRule InputParameters? {
 RuleSource
 target [Action +]
 SlotRule*
}

Every model element rule has a name, a source, a target, an optional list of input
parameters and is associated with a number of slot rules. Model element rules specify
a correspondence between elements in the rule source and elements in the rule target.
When a rule is executed elements in the rule target are instantiated for every tuple that
matches the rule source.

The target of a model element rule contains a set of actions. Two types of actions
are supported: instantiation and update. Every instantiation specifies a meta-construct
in the target meta-model or a type from OCL. The element created by an instantiation
might be assigned to an identifier. Instantiations enumerate the names of the slots that
will be assigned with value after the instantiation. Slot values are determined from an
optional expression specified in the slot list and an optional set of slot rules.

In the example, the rule instantiate specifies two instantiation actions based on
ModelElement and Slot constructs respectively. The second instantiation is assigned
to the identifier instSlot. All slots are assigned with expressions. Expressions may
contain variables defined in the source of the rule (e.g. value=c) or assigned to the
other instantiations in the same rule.

The second type of action that can be used in the rule target is the update action. It
modifies the slot values of model elements selected by the rule source.

The transformation language supports single inheritance among model element
rules. The inheriting rule inherits from the parent rule its source, target and the associ-
ated slot rules.

Rule Source. Rule source specifies the characteristics of the elements in the source
model that will be selected by a transformation rule. Rule source is evaluated to a set
of tuples containing elements in the source model. The syntax of the rule source is
given below.

source [Component +, (condition {BooleanExpressionInOCL})?]

A rule source enumerates at least one component. An optional condition may be im-
posed on the components. The components are two kinds: an identifier that uniquely
identifies an element in the source model or a variable that can be bound to more than
one source element. Variables have a type which can be a model element from the

 MISTRAL: A Language for Model Transformations 153

meta-model (i.e. a meta-construct) or one of the primitive and collection types avail-
able in Object Constraints Language (OCL). If the type is a meta-construct then the
variable matches its instances in the source model. The Cartesian product of the
matches for all the variables forms a set of tuples filtered out by the condition of the
source.

The source expression of instantiate model element rule contains a variable c that
will be bound to instances of Class. The condition constrains the set of model ele-
ments that will be bound to c to those classes that are not abstract:

source [c: Class, condition{c.isAbstract=false}]

It is also possible to select elements instances of the specializations of a given
meta-construct. In general, more than one generalization hierarchy may exist in a
given meta-model. The names of the hierarchies must be defined in the configuration
of the meta-model. These names may be used to specify a selection. A source rule that
selects instances of a given class aClass and also instances of all its subclasses is
specified below. The keyword select is used in combination with the name of the
relation:

source [c: aClass select sub-classes]

Slot Rules. Slot rules are always associated to a model element rule and specify how
to obtain the values of the slots of its instantiations. The syntax of the slot rules is
given below:

ruleName RuleSource target[(slotName=Expression)+]

Every slot rule has a name, a source and a target. Rule target enumerates the slots
to be set up with a value. Rule source specifies the elements in the source model that
will be used to obtain the value of the slots. A given slot may have more than one slot
rule for the calculation of the value.

There are two forms of slot rules: single form and form with alternatives. Slot rules
in single form have only one source expression. It is evaluated in the context of the
current matching of the model element rule that owns the slot rule. The source of the
slot rule may refer to the variables defined in the owning model element rule. It is
often the case that the values of variables in the slot rule source are determined rela-
tively to the model elements that match the owner rule. The values of the slots are
determined by evaluating expressions over the variables in the rule source.

In instantiate model element rule the value of the slot named slots in the Mod-
elElement instantiation is calculated by two slot rules named attributeSlots and asso-
ciationSlots. This is indicated by including the slot name in the target of a slot rule.

Slot rules in the form with alternatives specify multiple alternative sources. They
are evaluated in the order of their appearance and the first source that results in a non-
empty set is used to determine the values of the slots in the target. It is possible to
specify an alternative without a source in the end of the list with alternatives. It is
used if none of the preceding alternatives is applied. The slot rule attributesFromPar-
ent belonging to DerivedConstructsForClass rule is an example of a slot rule in form
with alternatives.

154 I. Kurtev and K. van den Berg

To determine the value of a slot the transformation engine first evaluates the ex-
pression assigned to the slot in the instantiation. If there is no expression then the
value is obtained by executing the associated slot rules. For every match of the source
of a slot rule the expression assigned to the slot is evaluated. Results obtained from
the matches are united in a set. The sets obtained from the slot rules are united and the
result is used as value of the slot. Multiplicity and type constraints are checked. Ex-
pressions used in the instantiations may use the special variable slotRulesValue that
contains the result of the execution of the slot rules.

Linking Source and Target Elements. Whenever a model element rule is executed
the execution engine establishes an association link between the elements matched by
the source and the elements instantiated by the target of the rule.

The created target model elements may be used as slot values of other model ele-
ments created by other rules. They are accessed by querying the source elements for
the associated elements in the target model. The linking is done by the link-to con-
struct that instructs the transformation engine to establish a link between an element
of the source and the instantiations in the target of the rule.

In DerivedConstructsForClass rule the classes selected by the source are linked to
the sets derivedAttributes and derivedAssociations. The built-in function target may
be used to query a source element for the elements linked to it. An example usage of
that function can be seen in the slot rules of instantiate.

Invoking Rules. By default, model element rules are executed exactly once on every
match of their source. It is also possible to invoke a model element rule explicitly by
name over a given source element and to use the result in expressions.

To create new slots every time when a model element is instantiated from a class
we explicitly invoke MOFAttributeToSlot rule in the expression slots = MOFAttrib-
uteToSlot(a) in the attributeSlots slot rule. The same approach is used in associa-
tionSlots slot rule.

4.4 Transformation Engine Prototype

This section describes a prototype of a transformation engine developed for a previ-
ous version of the transformation language MISTRAL. The previous version of the
language is designed for XML processing. A description of the approach for XML
processing based on model transformations can be found in [7]. The approach reflects
the scenario shown in Fig. 1c. The language is coupled with XML Schema Meta-
model and Java Meta-model. This is the main difference with the current version of
language MISTRAL. The two languages employ the same constructs presented in this
paper: model element rules and slot rules.

The implementation of the transformation engine for the language applied for
XML processing served as a proof of concept for the algorithms of rule execution. We
give a short description of the architecture of the transformation engine. More detailed
description of the architecture and implementation of the engine accompanied by
several case studies are given in [17].

 MISTRAL: A Language for Model Transformations 155

Fig. 10. Architecture of the prototype of the transformation engine

Fig. 10 shows the components in the architecture of the transformation engine pro-
totype. An input XML Document is parsed by XML Parser, which generates XML
Document Internal Representation used by other components in the engine. Trans-
formationDefinition is parsed by Parser, which generates Transformation Definition
Internal Representation. This representation is checked by Preprocessor. Preproces-
sor applies Well-formedness Checker and Type Checker to perform the checking.
Transformation is executed by Rule Execution Engine that invokes Source Pattern
Matcher to extract nodes from XML Document Internal Representation. Pattern
matcher uses information from Source XML Schema. Rule Execution Engine uses
Target Classes to generate the output Objects.

5 Defining the Configuration of the Relational Model

In this section, we present an example implementation of some of the functions iden-
tified in section 3.4. For illustrative purposes functions are implemented as transfor-
mation rules written in the transformation language presented in section 4. The instan-
tiation mechanism of the relational model (function instantiate) is defined below.

In this transformation the targets are not the generic classes ModelElement and Slot
as in the definition of the instantiation for the MOF Model. Instead Tuple and Field
are used and these classes are instantiated through the MOF instantiation defined in
the previous section. The transformation engine will use the rule instantiate defined
for the MOF Model to instantiate Tuple and Field and will build the underlying repre-
sentation.

156 I. Kurtev and K. van den Berg

instantiate ModelElementRule{
 source [s:RelationalSchema]
 target [Tuple{field, instanceOf =s}]

 SlotRules{
 Fields

 source [f:FieldType=s.fieldTypes]
 target [field=FieldTypeInstantiation(f)]
 }
}

FieldTypeInstantiation ModelElementRule{

 source [ft:FieldType]
 target [Field{name=ft.name, instanceOf=ft}]
}

The next rule implements the function meta that returns the meta-construct for a
given tuple or field. Note that it does not distinguish between instances of Tuple and
Field since the generic class ModelElement is used.

meta ModelElementRule {
 source [me: ModelElement, slot=me.slots, condition{slot.name=’instanceOf’}]
 target [meta-construct: ModelElement=slot.value]
}

We also specify a transformation rule used for slot value access that implements
the function getSlotValue:

getSlotValue ModelElementRule inputParameters [slotName: String]{
 source [context: Tuple, f:Field=context.field, condition {f.name=slotName}]
 target [result: Set=f.value]
}

This rule is executed on a tuple supplied by the transformation engine and bound to
the variable context. The rule navigates over the fields and selects a field with name
equal to the input parameter slotName. Selection and slot value access is based on the
functions defined for the MOF Model.

Setting slot values is implemented as an in-place transformation over tuples. The
rule takes as input parameters the slot name and the value to be assigned. The source
of the rule (the variable context) is supplied by the transformation engine. Then the
slot f with name ‘value’ will be set.

setSlotValue ModelElementRule
 inputParameters [slotName:String, newValue:Set]{
 source [context:Tuple, f:Field=context.field, condition {f.name=slotName}]
 target [update f {value=newValue}]

}

With this example we have shown how to use the transformation language for the
specification of transformation rules that implement some of the functions in the con-
figuration of relational model.

 MISTRAL: A Language for Model Transformations 157

6 Related Work

Meta-modeling architectures based on a common representation of the elements in
different levels can be found in other domains of computer science. RDF Schema [6]
defines a three level architecture where all constructs are represented as triples ac-
cording to the RDF data model [3]. The approach for meta-modeling described in [5]
also has three levels and 5 types of instantiation mechanisms called conformance
relationships. The framework uses a transformation language based on logical formu-
las. Transformations between any levels are possible. The authors of [18] propose a
multilevel meta-modeling framework where instantiation and generalization are treated
in a uniform way. In [1] the instantiation mechanism is explicitly defined as a function
that can be applied on a model at any level. That function resembles the MOF instantia-
tion mechanism and is reused also in the UML meta-model. The paper does not study
how other instantiation mechanisms would be defined in that framework.

7 Conclusions

We presented an approach for defining a model transformation language that allows
specifying transformations between models residing at arbitrary level in the MOF
architecture. Our language treats the MOF architecture as a homogeneous modeling
space consisting of model elements all represented by the same generic structure.
Different instanceOf and generalization relations may be defined within that space.
These relations have a significant impact on the transformation language. The primary
design goal for our transformation language is separation between the language and
specific instantiation and generalization mechanisms. The latter are implemented as
functions linked to the transformation engine. We showed examples of how these
functions themselves can be implemented in the transformation language.

Our approach illustrates the need for a systematic definition of modeling languages
within the MOF architecture and one particular example how transformation technol-
ogy can benefit from that.

As a next step for research we plan to study the representation of various UML
profiles within the framework presented in the paper.

References

1. Álvarez, J., Evans, A., Sammut, P.: Mapping between Levels in the Metamodel Architec-
ture, In Proceedings of UML2001, Springer-Verlag Heidelberg, Toronto, Canada, 2001

2. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation, IEEE
Software 20(5), 2003, pp. 36-41

3. Beckett, D.: RDF/XML Syntax Specification, W3C Document, 2003
4. Bézivin, J., Lemesle, R.: Ontology-Based Layered Semantics for Precise OA&D Model-

ing, ECOOP'97 Workshop Reader, Finland, 1997
5. Bowers, S., Delcambre, L.: On Modeling Conformance for Flexible Transformation over

Data Models, In Proc. of the Workshop on Knowledge Transformation for the Semantic
Web at the 15th European Conference on Artificial Intelligence (KTSW-2002), Lyon,
France, 2002

158 I. Kurtev and K. van den Berg

6. Brickley, D., Guha, R. V.: RDF Vocabulary Description Language 1.0: RDF Schema,
W3C Document, 2003

7. Kurtev, I., van den Berg, K.: Model Driven Architecture based XML Processing, Proceed-
ings of ACM Symposium on Document Engineering, Grenoble, France, 2003

8. Kurtev, I., van den Berg, K.: Unifying Approach for Model Transformations in the MOF
Metamodeling Architecture. In M. van Sinderen and L. Pires (Eds.), 1st European MDA
Workshop on Industrial Applications (MDA-IA), CTIT Technical report TR-CTIT-04-12,
Enschede, the Netherlands, 2004

9. Kurtev, I.: Adaptability of Model Transformations. PhD Thesis. University of Twente.
ISBN 90-365-2184-x. 2005

10. McLaughlin, B.: Java & XML Data Binding. O’Reilly. 2002
11. OMG. MDA Guide version 1.0.1. OMG document omg/2003-06-01, 2003
12. OMG. Common Warehouse Metamodel (CWM) Specification. OMG document for-

mal/03-03-02, 2003
13. OMG. Meta Object Facility (MOF) Specification. OMG document formal/02-04-03, 2002
14. OMG. MOF 2.0 Query/Views/Transformations RFP. OMG document ad/2002-04-10,

2002
15. OMG. Object Constraint Language (OCL). OMG document ptc/03-10-14
16. OMG. XML Metadata Interchange (XMI) Specification. OMG document formal/03-05-

02, 2003
17. Rosheuvel, A.: XML processing based on model transformations: design, implementation,

and testing of unmarshaler. MSc Thesis. University of Twente. 2003
18. Varró, D., Pataricza, A.: VPM: A visual, precise and multilevel metamodeling framework

for describing mathematical domains and UML, Software and System Modeling 2(3),
Springer-Verlag, 2003, pp. 187-210. 2003

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 159 – 173, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Integrating Platform Selection Rules in the Model Driven
Architecture Approach

Bedir Tekinerdo an1, Sevcan Bilir2 and Cem Abatlevi2

1 TRESE Software Engineering Group, Faculty of Computer Science,
University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands

bedir@cs.utwente.nl
2 Department of Computer Engineering, Bilkent University,

06800 Bilkent Ankara, Turkey
{sbilirm, abatlevi}@cs.bilkent.edu.tr

Abstract. A key issue in the MDA approach is the transformation of platform
independent models to platform specific models. Before transforming to a
platform specific model, however, it is necessary to select the appropriate
platform. Various platforms exist with different properties and the selection of
the appropriate platform for the given application requirements is not trivial. An
inappropriate selection of a platform, though, may easily lead to unnecessary
loss of resources and lower the efficiency of the application development.
Unfortunately, the selection of platforms in MDA is currently implicit and lacks
systematic support. We propose to integrate so-called platform selection rules in
the MDA approach for systematic selection of platforms. The platform selection
rules are based on platform domain models that are derived through domain
analysis techniques. We show that the selection of platforms is important
throughout the whole MDA process and discuss the integration of the platform
selection rules in the MDA approach. The platform selection rules have been
implemented in the prototypical tool MDA Selector that provides automated
support for the selection of a platform. The presented ideas are illustrated for a
stock trading system.

1 Introduction

One of the key motivations for Model Driven Architecture (MDA) is the existence of
too many platforms, and too many conflicting implementation requirements, reducing
the interoperability, portability and reuse of the applications [13]. To this end, MDA
explicitly separates the functionality from platform specific concerns and provides
Computation Independent Models (CIMs), Platform Independent Models (PIMs),
Platform Specific Models (PSMs) and the code (model). One of the key issues is then
the transformation among these models. In general, the transformations concern the
mapping from PIM to PSM, from PSM to PSM, and from PSM to code. Several
transformation techniques have been proposed between the various models and this is
actually one of the active research topics.

As such, the development of a system in MDA starts with defining the computation
independent model, which is mapped to a platform independent model, and by a
series of transformations gradually the platform specific properties are included
through the platform specific models, eventually resulting in the final code.

160 B. Tekinerdo an, S. Bilir, and C. Abatlevi

Although, the mapping to different models and the related transformations have
gained more interest, the selection of particular platform is not explicitly addressed.
During the last years, different platforms have been proposed such as CORBA, .NET
and J2EE. Each project may have its own requirements and constraints and depending
on the project parameters, different types of platforms may be required. It is important
that the right platform is selected to meet the project requirements and to avoid
unnecessary loss of resources because of maintenance problems later on. Selecting an
inappropriate platform will require redoing the whole transformation process between
the different models including PIM to PSM, PSM to PSM and PSM to code.

Selecting a platform, however, is not a trivial process. Each platform usually
addresses different properties and selecting a platform requires a broad understanding
of the available platforms. Currently, in MDA the selection of platforms is basically
implicit, and no systematic support is provided to guide the software engineer in
selecting the right platforms.

We propose to integrate so-called platform selection rules for selecting an
appropriate platform in the MDA approach. Platform selection rules are derived from
the platform domain model. The platform domain model defines the commonality and
variability of a set of platforms and is derived using domain analysis techniques. The
platform selection rules help to determine to which extent the platform is suitable or
not.

The approach is generic, yet as an example we define the rules for selecting .NET
and J2EE platforms. We illustrate our ideas for a stock trading system and describe a
prototypical tool MDA Selector, which implements the platform selection rules.

The remainder of this paper is organized as follows: Section 2 introduces the
example case stock trading system that is used throughout the paper to discuss the
problems and the solutions. Section 3 provides the background on transformation
rules and additionally introduces the notion of platform selection rules. Section 4
discusses the approach for extracting and specifying the platform selection rules.
Section 5 discusses how platform selection rules can be integrated in the MDA
approach. Section 6 presents the prototypical tool that implements the platform
selection rules for J2EE and .NET. Section 7 provides the related work and finally
section 8 presents the conclusions.

2 Example: Stock Trading System

Development of a system in MDA proceeds from CIM to PIM, from PIM to PSM,
and from PSM to code. In the following, we will show the CIM and the PIM for a
stock trading system and then discuss the motivation for systematic selection of
platforms.

2.1 Computation Independent Model

In the stock trading system, the client requests the stockbroker to enter a buy or sell
order for a certain number of stocks. An order results in a deal when a matching bid
of the opposite type is present. The system automatically performs the possible deals
and entails several bookkeeping actions.

 Integrating Platform Selection Rules in the Model Driven Architecture Approach 161

Enter Buy OrderStockbroker

Enter Sell Order

AnalyzeRisk

AnalyzePortfolio

AnalyzeHistory

Give Buy Order Client

Give Sell Order

Fig. 1. Computation Independent Model for Trading System (Business Model)

Figure 1 represents (part of the) computation independent (business) model of the
stock trading system. In the use case, there are three two actors: StockBroker and
Client. The actor StockBroker performs the use cases Analyze Risk, Analyze History,
Analyze Portfolio, Enter Buy Order, Enter Sell Order. The actor Client can apply the
use cases Analyze Risk, Analyze Portfolio, Analyze History, Give Sell Order and Give
Buy Order.

2.2 Platform Independent Model

The CIM does not include any computational issues and defines the solution from a
requirements and business perspective. The PIM provides a model of the application
including the computational aspects but refraining from the platform specific aspects.
Fig. 2 shows the (simplified) PIM for the stock trading system.

Fig. 2. (Simplified) PIM for stock trading system

162 B. Tekinerdo an, S. Bilir, and C. Abatlevi

2.3 Selection of Platforms

The representation of the platform independent model is important to support the
quality factors of reuse, interoperability and portability to different platforms.
However, for the more concrete implementation it is necessary that a platform is
selected after which the PIM is mapped to a PSM including the specific properties of
the selected platform.

For the stock trading system, the first important question is then which platform to
select. There are various platforms and it is not trivial to select a platform that best fits
the needs of the stock trading system. All of the existing platforms have different
properties and in principle can be selected to realize the PSM. Albeit any changes to
the platform will not influence the PIM in the MDA perspective, the selection of a
given platform will have a serious impact on the platform specific model. If a non-
optimal platform is selected this will directly impact the PSMs which need to be
generated again. If the right transformation rules exist, and if these are automated then
the generation of PSMs might be better supported. Nevertheless, it is not efficient to
continuously rely on a trial-and-error approach until the right platform has been
selected, and likewise it is worthwhile to provide a systematic approach, which
supports the decision on a platform. Unfortunately, this is not explicit in MDA yet.
The following sections elaborate on this issue.

3 Transformation Rules and Platform Selection Rules

Several approaches have been proposed for mapping PIM to PSM, such as use of
templates, marks, and patterns. We can categorize all these approaches as transfor-
mations. Within this context, Kleppe et. al. provide the following definitions [10]:

Transformation is the automatic generation of a target model from a source
model, according to a transformation definition.

A Transformation Definition is a set of transformation rules that together
describe how a model in the source language can be transformed into a model in the
target language.

A Transformation Rule is a description of how one or more constructs in the
source language can be transformed into one or more constructs in the target
language.

All these definitions and tools are primarily focused on transformation of the
models down to code. Although MDA improves the interoperability and portability of
the systems, it does not explicitly define which platform to choose for a given set of
project requirements, though. In fact, this is actually the strength of MDA; it does not
commit to a particular platform.

Nevertheless, sooner or later a platform must be selected to realize the system.
Since the selection of the platform is not explicit this is usually done in an informal
and less systematic manner.

Complementary and in alignment to the above definitions we introduce the
definitions that are required for selecting platforms:

Platform Selection is the automatic selection of a platform according to the input
from the application requirements.

 Integrating Platform Selection Rules in the Model Driven Architecture Approach 163

Selection Definition

Platform Selection

Application Requirements

Selection Rule 1

Selection Rule 2

Selection Rule n

Fig. 3. Platform selection inputs

Platform Selection Definition is a set of selection rules that together describe the
selection of platforms,

Platform Selection Rule is a description on the selection of a particular platform
based on a given property.

The idea of selecting platforms is given in Fig. 3.
The rules for selecting platforms are different from existing transformation rules in

two perspectives. First, the rules are defined before the transformation rules. Second,
the rules do not transform any model but only support the system designer in the
selection of the platform. Altogether, we think that these platform selection rules are
complementary to the existing transformation rules.

4 Approach for Defining Platform Selection Rules

Intuitively, it seems sound to support the software engineer in selecting a platform
based on a given set of rules. The question of course is how to define these rules. For
this, we propose to apply domain analysis techniques. In section 4.1, we will discuss
the approach for defining a platform domain model using domain analysis techniques.
Based on this platform domain model, the approach for deriving platform selection
rules will be explained in section 4.2. Finally, section 4.3 discusses the selection of
platforms based on the defined rules and the project constraints.

4.1 Defining a Platform Domain Model

Domain analysis can be defined as the process of identifying, capturing and
organizing domain knowledge about the problem domain with the purpose of making
it reusable when creating new systems [1]. Domain analysis focuses on a given
domain and aims to represent this domain in a reusable format. The UML glossary
provides the following definition of the term domain [8]:

Domain: An area of knowledge or activity characterized by a set of concepts and
terminology understood by practitioners in that area.

Conventional domain analysis methods consist generally of the activities Domain
Scoping and Domain Modeling [1]. Domain Scoping identifies the domains of
interest, the stakeholders, and their goals, and defines the scope of the domain.
Domain Modeling is the activity for representing the domain, or the domain model.

164 B. Tekinerdo an, S. Bilir, and C. Abatlevi

The domain model can be represented in different forms such as object-oriented
language, algebraic specifications, rules, conceptual models etc. Typically a domain
model is formed through a commonality and variability analysis to concepts in the
domain.

Our focus in this paper is on modeling platforms for reuse. The MDA Guide
provides the following definition for platform [13]:

Platform: a set of subsystems and technologies that provide a coherent set of
functionality through interfaces and specified usage patterns, which any application
supported by that platform can use without concern for the details of how the
functionality provided by the platform is implemented.

The MDA guide further classifies platforms into generic platform types,
technology specific platform types and vendor specific platform types. The discussion
of our study is independent of these classifications.

A domain for our purposes represents the area of knowledge on the set of platforms
that we are interested in. We term this as the platform domain model. Related to
this, in the MDA Guide the notion of platform model is defined [13]:

Platform model provides a set of technical concepts, representing the different
kinds of parts that make up a platform and the services provided by that platform.

This definition focuses implicitly on the modeling of a single platform. With
platform domain model, we define a model that represents one or more platforms. For
this, it is required to model the common properties and the variant properties of the
corresponding alternative platforms. To this end, we apply feature modeling, which is
a well-known technique in domain analysis [6]. Feature modeling results in a feature
model, which consists of a feature diagram and additional semantic information such
as descriptions of features, rationale of features, etc. A feature diagram represents a
hierarchical representation of the features of a system. The root of a feature diagram
represents a concept.

Fig. 4 presents the approach for modeling platforms. In the first step, it is decided
which platforms one is interested in and the corresponding domains are identified.
This is actually the domain scoping for platforms. As an example, one might decide to
focus on Corba, .NET and J2EE. Once the platforms are known, the corresponding
platform domain model will be developed. An appropriate platform domain model
that meets the application requirements might already exist in the literature. If no
suitable platform model exists then this is defined using commonality and variability
analysis to the knowledge sources on the corresponding platforms. The knowledge
sources might include textbooks, technical papers, human experts or systems, which
implement the corresponding pattern. Once the platform domain model is developed
it will be evaluated based on the application requirements and the platform
information. If the evaluation is passed then the platform domain model can be
utilized.

Fig. 5 presents, for example, a feature diagram for platforms as a result of domain
analysis to J2EE and .NET platforms. It describes a platform as consisting of Vendor,
Operating System, Architecture, Language and Services features. This feature model
has been derived after a commonality and variability analysis to knowledge sources
on .NET and J2EE [14][15] [16].

 Integrating Platform Selection Rules in the Model Driven Architecture Approach 165

Fig. 4. Process for deriving platform domain model

Platform

Operating
System Language Services

Authentication

Transactions

AuthorizationJava C#

Vendor

Microsoft Multiple

Independent

Windows

Unix

Architecture

Presentation/
Access

Business
Logic

Run-time
Engine

Connectivity

JSP/
Servlets

JF
Swing

Web
Services

ASP.
Net

Win.
Forms

JRECLR

JCA

JDBCJMS
SOAP

ADO.
Net

Session
EJB Ent.

EJB
MDB

.Net
Man.

Comp[

Com+Que.
Comp

Legend:

optional feature

alternative feature

mandatory feature

Fig. 5. Feature Diagram for Platform Domain

166 B. Tekinerdo an, S. Bilir, and C. Abatlevi

Table 1. Properties for .NET Platform Table 2. Properties of J2EE Platform

P1. Vendor is Microsoft

P2. Operating System is Windows

P3. Presentation Access is ASP.Net,
Windows Forms, Web Services

P4. For Database Connectivity ADO.Net
and SOAP is used.

P5. Business logic is provided through
.NET Managed components and
COM Queued components

P6. Requires Common Language
Runtime (CLR) run-time engine.

P7. Source code is written in C#.

P8. Supports transaction and
authentication services

P9. ….

P1. Vendor is independent (more than 30)

P2. Operating System is independent

P3. Presentation Access is JSP, JFC, Web
Services

P4. For Database connectivity Java
Database Connectivity (JDBC)
protocol, Java Connector Architecture
(JCA), Java Messaging Service
(JMS) and SOAP is used.

P5. Business logic is provided through
Session Enterprise JavaBeans, Entity
Enterprise JavaBeans and Message
Driven Beans.

P6. Requires Java Runtime Engine (JRE)

P7. Source Code is written in Java

P8. ….

For deriving platform selection rules, we represent the platform domain model as a
set of platform properties. A platform property is defined as a description of the
feature of a platform and as such, is directly derived from the feature diagram. For
example, Table 1 and Table 2 represent (a set of) properties for .NET and J2EE
platforms, which have been derived from the feature diagram in Fig. 5.

4.2 Extracting the Rules from Platform Domain Model

Once the platform domain model has been derived it can already be manually utilized
in selecting the appropriate platform. For automating the rules a further formalization
is required. We do this by mapping the properties to the platform selection rules. The
platform selection rules are expressed using conditional statements in the form IF
<condition> THEN <consequent>. For example property P1 in Table 1 and Table 2
lead to the rules R1 and R2, respectively in Table 3. Note that the list is not
comprehensive due to space limitations.

4.3 Selecting Platforms Using Application Constraints

The platform selection rules represent the general cases for selecting platforms. For
selecting a platform we need to define the corresponding application constraints as it
was discussed in section 3 and illustrated in Fig. 3. Each constraint can trigger a rule in
the rule definition. As such, for a given set of constraints, a set of rules will be
triggered. The triggering of a rule means that the condition requested by the
constraints matches the condition of the platform selection rule. Assume that, for
example, the constraints as defined in Table 4 are specified for the stock trading
system.

 Integrating Platform Selection Rules in the Model Driven Architecture Approach 167

Table 3. Heuristic Rules for Platform Selection for J2EE and .NET

R1. IF the vendor should be independent
THEN select the platform J2EE

R2. IF the vendor should be Microsoft
THEN select the platform .NET

R3. IF the platform should be independent from the operating system
THEN select the platform J2EE

R4. IF the platform should have Windows operating system
THEN select platform .NET

R5. IF JVM run-time engine is installed/required
THEN select the platform J2EE

R6. IF CLR run-time engine is installed/required
THEN select the platform .NET

R7. IF the application will be implemented in Java
THEN select the platform J2EE

R8. IF the application will be implemented in C#
THEN select the platform .NET

R9. IF transaction and authentication support is required
THEN select the platform J2EE

R10. IF database access with JDBC is required
THEN select the platform J2EE

R11. IF database access with ADO.NET is required
THEN select the platform J2EE

R12. IF ASP.NET is required as a web-tier component
THEN select the platform .NET

R13. ….

These constraints trigger five rules R3, R6, R7 and R9 in Table 3. This leads to an
indecisive result to select J2EE (for R3, R7 and R9) and .NET (for R6). As in this
case, very often the application requirements do not lead to a single possible platform.
The reason for this is, firstly that the corresponding platforms share some common
properties, and secondly, the application requirements might be conflicting itself. To
support the decision process in case of conflicts, we apply the prioritization of the
constraints by assigning each of these a value between 1 and 9. Hereby the value 1 is
defined as a supportive but least important constraint, whereas 9 represent a very
strong decisive constraint. Note that the constraints C1 to C4 in Table 4 correspond to
the elements in the feature diagram as defined in Fig. 5. In principle, it would be
possible to annotate the priorities to the feature diagram as well. On the other hand,
the priorities for each project might change and in that sense, it is more appropriate to
separate the priorities from the feature diagram.

The priority values are assigned to the triggered rules. The decision for each
platform depends then on the number of fired rules and the values of the constraints.
Therefore, for the constraints in Table 4 this means that the total score for J2EE is
9+8+8=27 and the score for .NET is 5. This information could be used for the final
decision or for a closer look at the conflicting requirements. In fact, the prioritization
and the policy for selecting platforms based on these scores might be refined. What is
important here is that this decision is made explicit.

168 B. Tekinerdo an, S. Bilir, and C. Abatlevi

Table 4. Constraints and Priorities for Stock Trading Application

Constraint Priority

C1. The application should work in all
environments so the platform must be
operating system independent.

9

C2. The language which will be used for
implementation must be in Java 5

C3. The run time engine should be CLR. 8
C4. Transactions and authentication are required. 8

5 Integrating Selection of Platforms in the MDA Pattern

Fig. 6a illustrates the integration of the platform selection rules in the MDA pattern.
The drawing builds on the pattern as defined in the MDA Guide [13]. The rectangles
represent either the platform independent models or the platform specific models, the
arrows represent transformations and selections. In fact, the selection of platforms
appears to be complementary to the MDA pattern. In the current MDA pattern the
selection is implicit. Fig. 6a makes this explicit by adding an operation which selects
(and models) the platform. Similar to the initial MDA pattern the drawing is intended
to be suggestive and generic. The platform independent model together with the
selection of platform and the corresponding information on the platforms are
combined to produce a platform specific model. There can be many ways in which
transformations may be done. The selection is based on the approach as defined in the
previous sections.

It should be noted that the terms PIM and PSM are just relative terms and it is
difficult to draw a strict line between platform independent and platform specific
model. In fact, a platform specific model can function as a platform independent
model for a next stage. For example, the upper PIM that is independent of many
platform choices, could be mapped to a PSM which is specific to middleware
platforms. However, the transformation could be carried out so that the PSM is
independent of the particular component platforms.

This can also be derived from the given example case. The original platform
independent model is first mapped to a J2EE platform specific model, which remains
independent of the choice of a particular component platform in J2EE. In the given
example case, the J2EE-specific model can thus be considered as a PIM as well.
There are three basic component platforms in J2EE: JSP (Java Servlet Pages), Servlet
and EJB (Enterprise Java Beans). Before transforming the J2EE specific platform
independent model, we have to select the specific component platform in J2EE. This
process is illustrated in Fig. 6b. Note that the extended MDA pattern as defined in Fig.
6a is applied twice in Fig. 6b.

Selecting the component platforms of the J2EE platform requires defining the
corresponding platform selection rules. In principle, this is the same process as
defined in the previous sections, and we do not elaborate further on this.

 Integrating Platform Selection Rules in the Model Driven Architecture Approach 169

PIM

Select
Platform

Platform Model

PSM

Transformation

PIM

Select
(Middleware)

Platform

Platform Model

PSM

Transformation

PIMJ2EE

Select
(Component)

Platform

Platform Model

Transformation

 a) b)

Fig. 6. The integration of platform selection rules in the MDA pattern

6 Platform Selection Tool

Since the platform selection rules have been formalized, they can be easily
implemented in a tool to provide automated support for the decision of a platform. We
have implemented a prototypical tool environment for selecting a platform for a given
PIM. The tool environment is called MDA Selector. A snapshot of this tool is given in
Fig. 7. MDA Selector simply implements the rules that have been derived from the
platform domain model. The tool starts by prompting the user in order to determine
the middleware platform by using the check boxes, which represents the properties for
different platforms. In addition, each property can be assigned a number between 1
and 9. If all the required properties are checked and the numbers to these properties
have been assigned, then the user of the tool can click the action button Decide, to get
the decision on the platform. The decision is shown in the right corner using colored
rectangles. The size of the rectangle indicates the degree of preference for the given
platform. The rules themselves have been implemented as objects with the attributes
condition, platform and value. The attribute condition represents the condition of the
rule, the attribute platform refers to the selected platform for the condition, and the
attribute value represents the number assigned to the rule. Upon pressing the Decide
button the algorithm for selecting the platform is executed. Hereby, the selected
properties are matched against the implemented rules. In case a selected property
matches the condition of a rule, the rule will be triggered, that is the value for the rule

170 B. Tekinerdo an, S. Bilir, and C. Abatlevi

Fig. 7. Platform Selection Tool

is set to the entered value for the property and the degree for the corresponding
platform is updated. The action button Report provides additional information on the
result of the selection. The tool is implemented in Visualworks 3.0 and currently
includes a simple, though, effective implementation.

7 Related Work

The MDA guide [13] provides a definition of platform model but no explicit process
for deriving the platform model is given. We adopt domain analysis techniques for
systematically defining platform models. In [3] and [19], the notion of Platform
Description Model is presented, which is similar to our notion of platform model
since both are representations of the corresponding platform. In [4] the Platform
Model is expressed at a conceptual level and does not specifically represent a formal
model. In all of these approaches, the term platform model is utilized in transforming
a PIM to a PSM. In our approach, the platform model is used to derive the rules for
selecting the platforms. Later on, the platform model can still be used as an input to
the transformation process.

In [12] exploration and selection of alternative transformation models using
algebraic techniques is presented. Hereby the possible set of transformation models is
represented as transformation spaces. In our approach, we focus on modeling the
heuristic rules for selecting platform models. As such, both approaches seem to be
complementary to each other.

In [7] the authors discuss the relation between MDA and a configurable software
product line family. Similar to our understanding, the authors state that platform
models are at best derived using domain engineering techniques. A PIM in MDA
represents the model for a family of platform specific models and as such, seems to
perfectly align with the idea of developing domain models in domain engineering. We

 Integrating Platform Selection Rules in the Model Driven Architecture Approach 171

have shown how we can derive platform properties from feature diagrams, and
platform selection rules from these properties. It would be interesting to investigate
the relation between MDA and domain engineering further.

In our previous work, we have modeled heuristic rules for automating software
development methods [17] [18]. In these approaches, the rules represented selection,
elimination and transformation actions. In this paper, we have utilized rules merely to
select a platform. A useful further step would be to integrate both selection and
transformation rules in a common tool environment.

The tool that we developed can be considered as an initial expert system that
codifies the rules for selecting platforms. An expert system usually consists of a
knowledge base (facts), rule base including production rules, and an inference engine
for triggering these rules [11]. Expert systems have also been applied for the hardware
configuration problem. Hereby, the expert system determines the best hardware
configuration based on the rules in the expert system knowledge base as well as the
customer requirements.

8 Conclusions

It appears that current research on MDA primarily focuses on transformation of
models. Before transforming to a particular platform specific model, however, it is
necessary that the appropriate target platform is selected. Currently, the selection of
platforms is generally considered an ad hoc issue and largely remains implicit.
However, given the currently relatively broad set of platforms, which is despite MDA
still expected to grow in the future, it is certainly not a trivial task to select the
platform that optimally meets the application requirements. As such, we argue that
besides of transformation process in MDA also the selection of platforms should be
integrated in the MDA development pattern.

In section 3 we have given the definitions of platform selection, platform selection
definition, and platform selection rule as a complementary set of definitions on
transformation, transformation definition and transformation rule.

To extract the platform selection rules we have proposed to adopt domain analysis
techniques. In this context, we have primarily focused on defining properties of
platforms and derived the rules based on these properties. Further, a first prototypical
tool environment which indicates the use of the selection of platforms is provided. We
have illustrated the approach for selecting a platform for stock trading system.

Since PIM and PSM are just relative terms and a PSM can also function as a PIM
the platform specific transformations can be applied at different levels in MDA.
Similarly, in section 6 we have shown that this counts for selecting platforms as well.
Hereby, first the middleware platform was selected and then the particular component
platform in the given middleware.

Although the standard use of MDA assumes that products are built for all
platforms, and the transformation is considered as automatic, we have highlighted the
selection of platforms to determine whether it is suitable or not. From our study, we
can also conclude that the selection of platforms is complementary to the
transformation process. We have primarily focused on the platforms J2EE and .NET.
Although the presented example application is rather small, we think that the

172 B. Tekinerdo an, S. Bilir, and C. Abatlevi

presented ideas can scale easily for larger applications. This is because the basic
complexity for selecting the platforms is mostly defined by the platform domain
model itself, rather than the size of the application. In fact, the presented rules are
directly derived from the platform model and are more or less fixed for a given
platform. The only difficulty for larger applications is that the decision for each rule
could be more difficult, but still manageable. In our future work, we will provide the
domain models for other platforms as well and derive the rules to support the software
engineer in selecting the appropriate platforms.

Acknowledgements

We would like to thank the anonymous reviewers, Klaas van den Berg, and Ivan
Kurtev for their valuable feedback on earlier versions of this paper. This research has
been carried out in the Aspect-Oriented Software Architecture Design project, which
is funded by the Dutch Scientific Organisation in the Jacquard Software Engineering
Program.

References

[1] G. Arrango. Domain Analysis Methods. In Software Reusability, Schäfer, R. Prieto-Díaz,
and M. Matsumoto (Eds.), Ellis Horwood, New York, New York, pp. 17-49, 1994.

[2] U. Assmann, Automatic roundtrip engineering, Electronic Notes in Theoretical Computer
Science Vol. 82, Issue 5.

[3] J. Bézivin and N. Ploquin, Combining the Power of Meta-Programming and Meta-
Modeling in the OMG/MDA Framework, OMG's 2nd Workshop on UML for Enterprise
Applications, San Francisco, USA, December, 2001

[4] S. Bilir & C. Abatlevi. Model-Driven Architecture Based on Design Space Modeling.
Technical Report, Department of Computer Engineering, Bilkent University, Ankara,
Turkey, June, 2003.

[5] S.E. Borch, J.W. Jespersen, J. Linvald, Kasper Østerbye. A Model Driven Architecture
for REA based systems. In Proc. of Model Driven Architecture: Foundations and
Applications, pp. 103-108, University of Twente, Enschede, The Netherlands, 2003.

[6] K. Czarnecki & U. Eisenecker. Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

[7] S. Deelstra, M. Sinnema, J. van Gurp & J. Bosch. Model Driven Architecture as
Approach to Manage Variability in Software Product Families. In Proc. of Model Driven
Architecture: Foundations and Applications, pp. 109-114, University of Twente,
Enschede, The Netherlands, 2003.

[8] G. Booch, J. Rumbaugh & I. Jacobson. The Unified Modeling Language User Guide,
Addison-Wesley, 1999.

[9] K. Kang, S. Cohen, J. Hess, W. Nowak, & S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report, CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, November
1990.

[10] A. Kleppe, J. Warmer, W. Bast. MDA Explained, The Model-Driven Architecture:
Practice and Promise, Addision-Wesley, 2003.

 Integrating Platform Selection Rules in the Model Driven Architecture Approach 173

[11] M.R Klein & L.B. Methlie, Knowledge-based Decision Support Systems, 2nd Ed., Wiley,
1995.

[12] I. Kurtev & K. van den Berg. A Synthesis-Based Approach to Transformations in an
MDA Software Development Process. In Proc. of Model Driven Architecture:
Foundations and Applications, pp. 121-126, University of Twente, Enschede, The
Netherlands, 2003.

[13] MDA Guide Version 1.0. Edited by Joaquin Miller and Jishnu Mukerji.
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf, June, 2003.

[14] J2EE and Microsoft .NET, Oracle White Paper, April 2002.
[15] P. Perrone, S.R. & T. Schwenk J2EE Developer's Handbook, SAMS, 2003.
[16] C. Szypersky. Component Software: Beyond Object-Oriented Programming, Addison-

Wesley, 2002.
[17] B. Tekinerdogan & M. Aksit. Providing automatic support for heuristic rules of methods.

In: Demeyer, S., & Bosch, J. (eds.), Object-Oriented Technology, ECOOP '98 Workshop
Reader, LNCS 1543, Springer-Verlag, pp. 496-499, 1999.

[18] B. Tekinerdogan. Formalizing heuristic rules of Extreme Programming. Dept. of
Computer Science, University of Twente, 2003.

[19] E.D. Willink. UMLX: A graphical transformation language for MDA. In Proc. of Model
Driven Architecture: Foundations and Applications, pp. 13-24, University of Twente,
Enschede, The Netherlands, 2003.

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 174 – 188, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Platform-Independent Modelling in MDA: Supporting
Abstract Platforms

João Paulo Almeida, Remco Dijkman, Marten van Sinderen,
and Luís Ferreira Pires

Centre for Telematics and Information Technology, University of Twente,
PO Box 217, 7500AE, Enschede, The Netherlands

{almeida, dijkman, sinderen, pires}@cs.utwente.nl

Abstract. An MDA-based design approach should be able to accommodate
designs at different levels of platform-independence. We have previously
proposed a design approach [2], which allows these levels to be identified. An
important feature of this approach is the notion of abstract platform. An abstract
platform is determined by considering the platform characteristics that are
relevant for applications at a certain level of platform-independence as well as
the various design goals. In this paper, we discuss how our design approach can
be supported using the MDA standards UML 2.0 and MOF 2.0. Since our
methodological framework is based on the notion of abstract platform, we pay
particular attention to the representation of abstract platforms and the language
requirements to specify abstract platforms.

1 Introduction

A current trend in the development of distributed applications is to separate their
technology-independent and technology-specific aspects, by describing them in
separate models. The most prominent example of this trend is the Model-Driven
Architecture (MDA) [15], [18]. A common pattern in MDA development is to define
a platform-independent model (PIM) of a distributed application, and to apply
(parameterised) transformations to this PIM to obtain one or more platform-specific
models (PSMs). The main benefit of this approach stems from the possibility to
derive different alternative PSMs from the same PIM depending on the target
platform, and to partially automate the model transformation process and the
realization of the distributed application on specific target platforms.

The concept of platform-independence plays a central role in MDA development.
We believe that platform-independence can only be defined once a set of target
platforms is known, such that their general capabilities and their irrelevant
technological and engineering details can be established. This leads to the observation
that there can be several PIMs, possibly at different abstraction levels, depending on
whether one wants to consider different sets of target platforms. Another observation
is that different application characteristics or different sets of target platforms
generally lead to different types of (intermediate) models, design structures or
patterns, and model transformations. These observations have motivated our
investigations into what types of models can be useful in the MDA development

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 175

trajectory, how these models are related, and which criteria should be used for their
application. Some of the results of these investigations have been presented earlier in
[2], where we have proposed an MDA design trajectory that accommodates designs at
different levels of platform-independence.

An architectural concept that plays an important role in this approach is that of
abstract platform. An abstract platform defines an acceptable or, to some extent, ideal
platform from an application developer’s point of view; it represents the platform
support that is assumed by the application developer at some point of (the platform-
independent phase of) the design trajectory. Alternatively, an abstract platform
defines characteristics that must have proper mappings onto the set of concrete target
platforms that are considered for an MDA design process, thereby defining the level
of platform-independence for this particular process. Defining an abstract platform
forces a designer to address two conflicting goals: (i) to achieve platform-
independence, and (ii) to reduce the size of the design space explored for platform-
specific realization.

Any design approach that is intended to be successfully applied in practice should
be supported by suitable design concepts in suitable design languages. In this paper,
we present some methodological guidelines for platform-independent design and
define requirements for design languages intended to support platform-independent
design. Since our methodological framework is based on the notion of abstract
platform, we pay particular attention to the representation of abstract platforms and
the language requirements to specify them. We discuss how the architectural concept
of abstract platform can be supported in UML 2.0 [23] and MOF 2.0 [19].

This paper is further structured as follows: Section 2 provides some background on
the concept of abstract platform; Section 3 discusses how abstract platforms relate to
design languages; Section 4 discusses how abstract platforms can be represented in
UML 2.0 and MOF 2.0; Section 5 presents examples of abstract platforms and their
representations; Section 6 discusses limitations of UML 2.0 with respect to the
representation of abstract platforms; Section 7 positions our work with respect to
related work. Finally, Section 8 presents our conclusions and outlines future work.

2 Abstract Platforms

Platform-independence is a quality of a model that relates to the extent to which the
model abstracts from the characteristics of particular technology platforms. In order to
refer to platform-independent or platform-specific models, one must define what a
platform is. The following rather general definition of platform can be found in [18]
(page 2-3): “a platform is a set of subsystems and technologies that provide a coherent
set of functionality through interfaces and specified usage patterns”. This paper
concentrates on platforms that correspond to some middleware technology supporting
operation invocation and asynchronous message exchange, such as CORBA/CCM
[16], .NET [13] and Web Services [28], [29].

When pursuing platform-independence, one could strive for PIMs that are neutral
with respect to all different classes of middleware platforms. This is possible for
models in which the characteristics of the supporting technological infrastructure are
irrelevant, such as, e.g., conceptual domain models [4] and RM-ODP Enterprise

176 J.P. Almeida et al.

Viewpoint models [9], which can be considered as Computation Independent Models
[18]. However, along a development trajectory, when system architecture is captured,
some platform characteristics become relevant, and different sets of platform-
independent modelling concepts may be used, each of which being adequate only
with respect to specific classes of target middleware platforms. This leads to the
observation that platform-independence is not a binary quality of models; instead, a
distributed application can be described at several levels of platform-independence.
The level of platform-independence of a model must be carefully identified. We
propose to make this identification an explicit step in MDA development. The notion
of abstract platform, as proposed initially in [2], supports a designer in this step.

An abstract platform is determined by the platform characteristics that are relevant
for applications at a certain platform-independent level. For example, if a platform-
independent design contains application parts that interact through operation
invocations, then operation invocation is a characteristic of the abstract platform.
Capabilities of a concrete platform are used during platform-specific realization to
support this characteristic of the abstract platform. For example, if CORBA is
selected as a target platform, this characteristic can be mapped onto CORBA
operation invocations.

The PIM of a distributed application depends on an abstract platform model, in the
same way as the PSM depends on a (concrete) platform model (see Figure 1). Given
the PIM of an application and an abstract platform model, we distinguish two
contrasting extreme approaches to proceed with platform-specific realization:

1. Adjust the concrete platform, so that it corresponds directly to the abstract
platform.

2. Adjust the (scope of the) application during platform-specific realization, such that
the requirements specified at platform-independent level are preserved and the
platform-specific application model can be composed with the target platform
model.

In approach 1, the boundary between abstract platform and platform-independent
application model is preserved during platform-specific realization. This implies the
introduction of some platform-specific abstract platform logic to be composed with
the concrete target platform. The nature of this composition depends on the particular
requirements for the abstract platform. It may be possible to implement abstract
platform logic on top of the concrete platform. Nevertheless, this composition may
also imply the introduction of platform-specific (e.g., QoS) mechanisms, possibly
defined in terms of internal components of the concrete platform. Extension in a non-
intrusive manner is often the preferred way to adjust the concrete platform.
Techniques that can be used for non-intrusive extension include interceptors [16],
aspect-oriented programming and composition filters [5].

Approach 2 may imply the introduction of (e.g., QoS) mechanisms in the platform-
specific design of the application. This approach may be suitable in case it is
impossible to adjust the concrete target platform, e.g., due to the lack of extension
mechanisms or the cost implications of these adjustments.Figure 1 illustrates these
approaches to platform-specific realization.

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 177

(1)

(2)
Abstract –
Platform

Model

Application
(PIM)

Application
(PSM)

Concrete
Platform
Model

Application
(PSM)

trivial

Abstract-Plat.
Logic (PSM)

Concrete
Platform

Model

conformance

Fig. 1. Alternative approaches to platform-specific realization

Both approaches allow us to target different concrete platforms from the same
platform-independent model, with different quality characteristics [2]. Approach 1
can be generalized as a recursive application of service definition (external
perspective) and the service’s internal design, resulting in a hierarchy of abstract
platforms and a concrete target platform. At each step of the recursion, both
approaches to realization can be chosen.

3 Design Languages

Designs must be supported by suitable design concepts and represented using suitable
design languages. In an MDA design trajectory, several design languages may be
used, e.g., to produce models at different levels of abstraction. Alternatively, a single
“broad spectrum” design language [6] may be used. The design language adopted for
a design has an important role in defining characteristics of an abstract platform
assumed for the design.

In an MDA-based development trajectory, we may apply the implicit abstract
platform definition approach, in which the characteristics of an abstract platform are
implied by the set of design concepts used for describing the platform-independent
model of a distributed application. These concepts are often inherited from the
adopted modelling language. For example, the exchange of “signals” between
“agents” in SDL [10] may be considered to define an abstract platform that supports
reliable asynchronous message exchange. The restricted use of particular constructs in
a design language or the use of certain modelling styles can serve as a means to select
subsets of a language’s design concepts.

Instead of implying an abstract platform definition from the adopted set of design
concepts for platform-independent modelling, it may be useful or even necessary to
define the characteristics of an abstract platform explicitly, resulting in one or more
separate and reusable design artefacts. We call this approach explicit abstract
platform definition. During platform-independent modelling, parts of a pre-defined

178 J.P. Almeida et al.

abstract platform model may be composed with the model of the distributed
application. For example, although group communication is not a primitive design
concept of UML 2.0, it is possible to specify the behaviour of a group communication
sub-system using UML 2.0. This sub-system is then re-used in the design of a
distributed application. Other examples of pre-defined artefacts that may be included
in abstract platforms are the ODP trader [8] and the OMG pervasive services [18] (yet
to be defined). The set of design concepts of a design language is still relevant in this
approach, since the distributed application and the abstract platform model are
described in the language.

In both the implicit and explicit abstract platform definition approaches, there is
some overlap between language characteristics and abstract platform characteristics.
This leads to the formulation of an important requirement for a design language to
support platform-independent design: the concepts underlying the design language
should be precisely defined, so that the characteristics of the abstract platform can be
unambiguously derived from these concepts. This is important for at least two
reasons: (1) designers need to know the characteristics of the abstract platform when
defining platform-independent models of an application; and (2) abstract platforms
are a starting point for platform-specific realization.

Furthermore, a comprehensive MDA design approach should allow designers to
select or define suitable abstract platforms for their platform-independent designs.
This leads to the formulation of a second requirement for design languages suitable
for MDA: a design language should enable the definition of appropriate levels of
platform-independence.

4 Abstract Platform Definition with MDA Standards

In this section, we pay particular attention to the definition of abstract platforms using
MDA standards, namely UML 2.0 [23] and MOF 2.0 [19]. We discuss the fulfilment
of the design language requirements presented in Section 3, with both the implicit and
explicit abstract platform definition approaches.

4.1 Implicit Abstract Platform Definition

The concepts that plain UML prescribes for specifying communication between
application parts (objects or components) imply an abstract platform that is based on
request-response invocations and on message passing. In the UML 2.0 meta-model,
BehavioredClassifiers may offer operations and receptions. Operations represent the
capability of a classifier to receive and to respond to requests. Requests are sent when
objects execute CallOperationActions. Receptions represent the capability of a
classifier to receive Signal instances, which are sent asynchronously by other objects
when these execute SendSignalActions and BroadcastSignalActions. For plain UML,
the usefulness of the implicit abstract platform definition approach is restricted to
abstract platforms based on request-response invocations and on point-to-point
message passing.

UML has been developed as a general purpose language that is expected to be
customized for a wide variety of domains, platforms and methods [25]. A certain

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 179

degree of customization may be obtained in UML through semantic variation points
and profiles. This choice in the definition of UML has two implications for implicit
abstract platform definition: the UML specification (“plain” UML) is not conclusive
with respect to the abstract platform implied, and, the customization mechanisms have
to be applied in order to precisely define specific abstract platforms.

Semantic variation points provide an intentional degree of freedom for the
interpretation of the UML’s metamodel semantics. Some semantic variation points
defined in the UML specification should be resolved for plain UML to be conclusive
with respect to the abstract platform implied by the language. An example of such a
semantic variation point is described in the UML 2.0 specification [23] (page 381):
“The means by which requests are transported to their target depend on the type of
requesting action, the target, the properties of the communication medium, and
numerous other factors. In some cases, this is instantaneous and completely reliable
while in others it may involve transmission delays of variable duration, loss of
requests, reordering, or duplication.” Without resolving this semantic variation point,
a designer would be forced to assume worst-case interpretations, e.g., that the implied
abstract platform provides an unreliable request/response mechanism. If this is
undesirable, e.g., because the abstract platform should provide a reliable
request/response mechanism, a designer should resolve the semantic variation point,
by defining that requests and response signals are transported reliably. Semantic
variation points may be partially resolved, i.e., only for the relevant aspects. For
example, a designer may consider the reliability characteristics of requests relevant,
but may consider the timing characteristics irrelevant. In this case, any interpretation
of the timing characteristics of requests would be acceptable. One could resolve these
semantic variation points by relating the UML metamodel with a formal semantics, or
to a basic set of design concepts with a formal semantics.

The specialization of UML for defining abstract platform characteristics can be
made more manageable and clearly defined through the use of UML profiles. Profiles
are language extensions consisting of metamodel elements that specialise elements of
a reference metamodel. The specialized elements can be given specific semantics, in
this way resolving semantic variation points. Furthermore, constraints expressed in a
language like OCL [22] can be added to profiles to restrict the use of specific
concepts or combinations of concepts. This use of profiling for implicit abstract
platform definition is restricted to constraining or specialising the abstract platform
implicitly defined by plain UML. In this approach, the referenced metamodel (UML
2.0’s metamodel) in combination with the UML profile assumes the role of abstract
platform model.

In case the relevant abstract platform characteristics cannot be represented by
resolving semantic variation points through the definition of profiles, one should
define new languages in terms of MOF metamodels. The design concepts of these
languages are not constrained by UML, and can be arbitrarily defined through
mappings from the metamodel elements to any suitable semantic domain. In this
approach, the MOF metamodel assumes the role of abstract platform model. Profiling
is more suited to the abstract platforms that require concepts that can be represented
as specialisations of UML concepts. MOF metamodelling is suited in case the
required concepts differ too much from the UML concepts, so that a new independent
metamodel has to be defined. When used systematically, profiling has the advantage

180 J.P. Almeida et al.

that UML tools can be used for model validation and verification, since the resulting
models still comply with the UML rules and constraints. MOF metamodelling has a
potential drawback that available validation and verification tools may be impossible
to reuse, so that new tools may have to be built for the new metamodel.

4.2 Explicit Abstract Platform Definition

As an alternative to changing the design concepts of plain UML by means of profiling
and thereby changing the implicit abstract platform, we can define the abstract
platform explicitly. The abstract platform is then composed with the design of the
application. This can be accommodated in UML 2.0 by using model library packages
[23] to define the abstract platform model. Model library packages are packages
stereotyped with the standard <<modelLibrary>> stereotype. The abstract platform
model library package can be imported by the PIM of the application. This is
represented by creating a dependency between the package where the PIM is defined
and the model library package where the abstract platform is defined.

An abstract platform can have an arbitrarily complex behaviour and structure,
varying from a simple one-way message passing mechanism to a communication
system that maintains transactional integrity and time order of messages. To make the
design of complex abstract platforms manageable, we can use UML 2.0’s composite
structures to break up a complex design into smaller pieces. State-machine and
activity diagrams may be associated with encapsulated classifiers to define their
behaviour.

Since the behaviour of the abstract platform is also described in UML, it may be
necessary to combine the explicit and the implicit abstract platform definition
approaches, e.g., by resolving semantic variation points that are relevant for the
composition of the abstract platform (explicitly defined) and the platform-independent
model of the application.

5 Examples

In order to illustrate both approaches to abstract platform definition in UML, we
specify the platform-independent model of a simple chatting application. This
application allows users residing in different hosts to exchange text messages.

Initially, the application is described in terms of an abstract platform that supports
the interaction of objects through a conference binding object. We call this abstract
platform the ConferenceAbstractPlatform. In order to define the composition of the
conference binding object with the application, we use reliable exchange of
asynchronous signals. For this purpose, we define an abstract platform that supports
reliable signal exchange with the implicit approach, by defining a UML profile. Later,
we consider two possible realizations of the ConferenceAbstractPlatform, one of
these relies on an event-based platform we define explicitly, and the other relies
solely on the exchange of reliable signals. The relations between the different models
are depicted in Figure 2 (the EventAbstractPlatform is only necessary for the
realization presented in section 5.4).

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 181

«profile»
ReliableSignalsProfile

«system»
Application

«modellibrary»
ConferenceAbst ractPlatform

«modellibrary»
EventAbstractPlatform

«apply»
«apply»

«apply»

«import»

«import»

Fig. 2. Relations between the PIM of the application and the abstract platforms defined with the
implicit and explicit approaches

5.1 Reliable Signal Exchange

Figure 3 depicts the ReliableSignalsProfile that specializes the exchange of
asynchronous messages in UML 2.0. A stereotype <<reliable>> is defined that can
be applied to instances of SendSignalAction (defined in the package
IntermediateActions of the UML 2.0 meta-model). Signals created by executing a
SendSignalAction with this stereotype are exchanged reliably, in that they cannot be
lost or duplicated. The SendSignalAction meta-class is the only meta-class specialized
in the profile. It is not necessary to specialise the meta-classes Signal and Reception,
since these represent respectively, the type of signal instances exchanged and the
ability to receive signal instances. The semantics of these meta-classes are
independent of the manner of transmitting signal instances.

«profile»
ReliableSignalsProfile

«metaclass»
IntermediateActions::

SendSignalAction

«stereotype»
reliable

Fig. 3. A UML profile specializing the exchange of asynchronous messages

5.2 The ConferenceAbstractPlatform

The ConferenceBinding component provides the ConferenceInterface and requires the
ParticipantInterface. An application part that uses the ConferenceBinding should
provide the ParticipantInterface. The signals exchanged between application parts
and the abstract platform are defined explicitly. A class diagram showing the
ConferenceAbstractPlatform’s component, signals and interfaces is depicted in
Figure 4.

182 J.P. Almeida et al.

cd ConferenceAbstractPlatform

«interface»

ParticipantInterface

+ «signal» MessageInd(String)

«signal»
MessageInd

+ content: String

«interface»

ConferenceInterface

+ «signal» Join(ParticipantInterface)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

«signal»
Join

+ participantid: ParticipantInterface

«signal»
Leave

+ participantid: ParticipantInterface

«signal»
MessageReq

+ content: String
+ participantid: ParticipantInterface

ConferenceBinding

Port1

ConferenceInterface

ParticipantInterface

cd ConferenceAbstractPlatform

«interface»

ParticipantInterface

+ «signal» MessageInd(String)

«signal»
MessageInd

+ content: String

«interface»

ConferenceInterface

+ «signal» Join(ParticipantInterface)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

«signal»
Join

+ participantid: ParticipantInterface

«signal»
Leave

+ participantid: ParticipantInterface

«signal»
MessageReq

+ content: String
+ participantid: ParticipantInterface

ConferenceBinding

Port1

ConferenceInterface

ParticipantInterface

Fig. 4. The ConferenceAbstractPlatform

 sm ConferenceBindingStateMachine

Initial

[joinleave]

[messaging]

Initial

Initial

waitjoinleave

waitmessagereq

«reliable»
MessageInd(content)

to i.next()

processmessage

[i.hasNext()]
[!i.hasNext()]

MessageReq(content, participant) /i=getParticipants()

Join(participant) /addParticipant(participant)

Leave(participant) /removeParticipant(participant)

sm ConferenceBindingStateMachine

Initial

[joinleave]

[messaging]

Initial

Initial

waitjoinleave

waitmessagereq

«reliable»
MessageInd(content)

to i.next()

processmessage

[i.hasNext()]
[!i.hasNext()]

MessageReq(content, participant) /i=getParticipants()

Join(participant) /addParticipant(participant)

Leave(participant) /removeParticipant(participant)

Fig. 5. The ConferenceBinding state-machine

Figure 5 shows the behaviour of the ConferenceBinding component specified as a
state-machine. ComponentBinding keeps a list of conference participants, which is
updated whenever a Join or Leave signal is handled. Upon reception of a MessageReq
signal, the ConferenceBinding sends out MessageInd signals to all participants of the
conference. In order to simplify the behaviour we have assumed that the MessageInd
signals are sent sequentially based on the order imposed by the list of participants
(result of i.next()). This illustrates the use of the <<reliable>> stereotype.

The application that uses the ConferenceAbstractPlatform may be defined at a
high-level of platform-independence, communicating with the conference binding
through signal exchange. Many alternative implementations for signal exchange are
possible, depending on the target platform. Further, there is a large freedom of
implementation for the conference abstract platform itself. Since the application is
shielded from the internal design of the conference abstract platform, it does not
depend on the interaction support eventually used by the conference binding object.

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 183

5.3 Realization of the ConferenceAbstractPlatform

Figure 6 depicts a realization of the ConferenceBinding. This realization relies on the
abstract platform that provides reliable signals.

The interaction point that corresponds to port1 is of type ConferencePort. The
ConferencePort handles the signals Join and Leave and delegates the handling of
signals MessageReq to the appropriate ConferenceComponent. There is a Conference
Component instance for each participant in the conference. ConferenceComponent
instances exchange message signals among each other and messageInd with the
interaction point of port1. The definition of these signals is omitted. An OCL [22]
constraint is used to define that ConferenceComponent instances are fully connected,
and that there are no links between an instance and itself. Figure 7 shows the
behaviour associated with the ConferenceComponent. The behaviour of
ConferencePort is omitted due to space limitations. The signals are exchanged
reliably, and therefore, the stereotype <<reliable>> is applied to all SendSignal
Action instances.

cd ConferenceAbstractPlatformRealization1

ConferenceBindingRealization1

port1 :
Conf erencePort

c [*] :ConferenceComponent
port2

ConferenceComponent

+ «signal» message(String)
+ «signal» MessageReq(ParticipantInterf ace, String)

port2

«Inv ariant»
{Conf erenceComponent .allInstances ()->f orAll (c 1 |
(c1.target .select(c1)->isEmpty ()) and
(c1.target ->asSet()->size()=c.allInstances ()- >size)
)}

ConferencePort

+ «signal» Join(ParticipantInterf ace)
+ «signal» messageInd(Conf erenceComponent, String)
+ «signal» Leav e(ParticipantInterf ace)
+ «signal» MessageReq(ParticipantInterf ace, String)

Conf erenceInterf ace

ParticipantInterf ace

participant

1 1

+conf comp

+source *

+target *

Fig. 6. A realization of the ConferenceAbstractPlatform

sm ConferenceComponentStateMachine

Initial

waitMessageReq

«reliable»
message(content)

to target[i++]

processMessageReq

waitmessage

«reliable»
MessageInd(this,
content) to port2

InitialInitial

MessageReq(participantid, content) /i=0

[i<target.size()]

[i==target.size()]

message(content)

Fig. 7. Behaviour of the ConferenceComponent represented as a state-machine

184 J.P. Almeida et al.

5.4 ConferenceAbstractPlatform Realized in Terms of EventAbstractPlatform

Figure 8 depicts an alternative realization of the ConferenceBinding. This realization
illustrates the recursive use of an explicitly defined abstract platform. The
EventAbstractPlatform is used as part eap in ConferenceBindingRealization2. The
dashed line around part eap is used to denote that this part is contained by reference.
The multiplicity of eap is one, i.e., only one instance of the EventAbstractPlatform is
used in this decomposition of the ConferenceBinding.

 cd ConferenceAbstractPlatformRealization2

ConferenceBindingRealization2

port1 :
ConferencePort

ConferencePort

+ «signal» Join(ParticipantInterface)
+ «signal» MessageInd(String)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

eap [1] :EventAbstractPlatform

port1

c [*] :
ConferenceComponent

portc porteap

ConferenceComponent

+ «signal» Join(ParticipantInterface)
+ «signal» notify(Event)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

portc porteap

«interface»

EventAbstractPlatformPackage::ConsumerInterface

+ «signal» notify(Event)

EventAbstractPlatformPackage::
EventAbstractPlatform

port1 «interface»

EventAbstractPlatformPackage::ProducerInterface

+ «signal» publish(Event)
+ «signal» subscribe(ConsumerInterface, EventKind)
+ «signal» unsubscribe(ConsumerInterface, EventKind)

ConferenceInterface

ParticipantInterface

ConsumerInterface

ProducerInterface

«realize»

*

1

1
*

cd ConferenceAbstractPlatformRealization2

ConferenceBindingRealization2

port1 :
ConferencePort

ConferencePort

+ «signal» Join(ParticipantInterface)
+ «signal» MessageInd(String)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

eap [1] :EventAbstractPlatform

port1

c [*] :
ConferenceComponent

portc porteap

ConferenceComponent

+ «signal» Join(ParticipantInterface)
+ «signal» notify(Event)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

portc porteap

«interface»

EventAbstractPlatformPackage::ConsumerInterface

+ «signal» notify(Event)

EventAbstractPlatformPackage::
EventAbstractPlatform

port1 «interface»

EventAbstractPlatformPackage::ProducerInterface

+ «signal» publish(Event)
+ «signal» subscribe(ConsumerInterface, EventKind)
+ «signal» unsubscribe(ConsumerInterface, EventKind)

ConferenceInterface

ParticipantInterface

ConsumerInterface

ProducerInterface

«realize»

*

1

1
*

cd ConferenceAbstractPlatformRealization2

ConferenceBindingRealization2

port1 :
ConferencePort

ConferencePort

+ «signal» Join(ParticipantInterface)
+ «signal» MessageInd(String)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

eap [1] :EventAbstractPlatform

port1

c [*] :
ConferenceComponent

portc porteap

ConferenceComponent

+ «signal» Join(ParticipantInterface)
+ «signal» notify(Event)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

portc porteap

«interface»

EventAbstractPlatformPackage::ConsumerInterface

+ «signal» notify(Event)

EventAbstractPlatformPackage::
EventAbstractPlatform

port1 «interface»

EventAbstractPlatformPackage::ProducerInterface

+ «signal» publish(Event)
+ «signal» subscribe(ConsumerInterface, EventKind)
+ «signal» unsubscribe(ConsumerInterface, EventKind)

ConferenceInterface

ParticipantInterface

ConsumerInterface

ProducerInterface

«realize»

*

1

1
*

cd ConferenceAbstractPlatformRealization2

ConferenceBindingRealization2

port1 :
ConferencePort

ConferencePort

+ «signal» Join(ParticipantInterface)
+ «signal» MessageInd(String)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

eap [1] :EventAbstractPlatform

port1

c [*] :
ConferenceComponent

portc porteap

ConferenceComponent

+ «signal» Join(ParticipantInterface)
+ «signal» notify(Event)
+ «signal» Leave(ParticipantInterface)
+ «signal» MessageReq(ParticipantInterface, String)

portc porteap

«interface»

EventAbstractPlatformPackage::ConsumerInterface

+ «signal» notify(Event)

EventAbstractPlatformPackage::
EventAbstractPlatform

port1 «interface»

EventAbstractPlatformPackage::ProducerInterface

+ «signal» publish(Event)
+ «signal» subscribe(ConsumerInterface, EventKind)
+ «signal» unsubscribe(ConsumerInterface, EventKind)

ConferenceInterface

ParticipantInterface

ConsumerInterface

ProducerInterface

«realize»

*

1

1
*

Fig. 8. Alternative realization of the ConferenceAbstractPlatform

The EventAbstractPlatform accepts events and subsequently forwards these events
to objects that have subscribed to the particular event type. There is a
ConferenceComponent for each participant in the conference. The definition of the
behaviour of the EventAbstractPlatform is omitted here, as well as the classes Event
and EventKind.

The EventAbstractPlatform can be realized on a number of event-based platforms,
such as, e.g., JMS [27] and CORBA (with the Event Service) [16]. Alternatively, a
recursive decomposition of the EventAbstractPlatform can be done, resulting, e.g., in a
design of the EventAbstractPlatform that relies on a request-response abstract platform.

6 Discussion

The example from the previous section illustrates two kinds of problems that can arise
when defining abstract platforms with a particular modelling language.

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 185

Firstly, a language’s design concepts may force decisions about desired platform
properties to be taken too early in the design process, because they do not permit
abstraction of these properties. The example in the previous section illustrates this for
the case of UML state machines. The state machine in Figure 5 determines that
message requests are processed one at a time. Therefore, a strict interpretation of this
model would exclude realizations of this abstract platform that accept multiple
message requests simultaneously. Alternatively, we could have specified that a
number of concurrent threads process multiple message requests at the same time.
However, this alternative commits to a particular concurrency model. Ideally, we
would have stated only that message requests are independent of each other, which is
appropriate at the level of abstraction considered. The decision on a particular
concurrency model would be delayed, and different alternative implementations
would be deemed acceptable. A designer may try to mitigate the limitation of the
UML representation by interpreting the behavioural specification loosely, e.g.,
informally defining that message requests can also be treated simultaneously despite
the state machine model. However, this limits the usability of models for model
transformation, automated testing, validation and simulation.

Secondly, a language’s design concepts may indirectly favour some platforms over
others, due to similarities in the structure of models and realizations in a particular
platform. Although an implementer could try to ignore the structure and choose to
adhere only to the model’s semantics, he or she will be inclined to use the platform
with the matching structure. The example from the previous section illustrates this for
UML composite structures. In composite structures, interaction points that correspond
to ports can only be created and destroyed along with the component to which they
are attached. This implies that, if we want to model that an unbound number of
distinct users may use the component through ports, we have to use a multiplexing
scheme like the one used in Figures 6 and 8. Although the specification gives the
impression that the multiplexing scheme has to be implemented, it is wiser for the
implementer to ignore this scheme in case the target platform allows the dynamic
creation and destruction of a component’s interaction points.

7 Related Work

The MDA Guide [18] provides some examples of “generic platform types” and
mentions briefly the need for a “generic platform model”, which “can amount to a
specification of a particular architectural style.” Nevertheless, the introduction of
these concepts is superficial: for example, the term “generic platform” is not even
defined explicitly. In our interpretation of that documentation, we position our notion
of abstract platform as subsuming that of generic platform. Abstract platforms can
have other relevant characteristics in addition to defining a “particular architectural
style”. We have identified models that may serve as abstract platform models, in two
different approaches to abstract platform definition that can be incorporated in MDA
using OMG core technologies, namely UML, profiles and MOF.

The UML profile for EDOC Component Collaboration Architecture (CCA) [24]
defines implicitly an abstract platform in which application part interactions are
always decomposed into asynchronous messages that are exchanged through “Flow

186 J.P. Almeida et al.

Ports”. This profile also introduces the notion of recursive component collaboration
(not present in UML 1.5 [26]), which can be explored to define abstract platforms
explicitly, similarly to what we have obtained by using UML 2.0’s composite
structures.

Explicit abstract platform definition is comparable to the definition of (the
behaviour of) connectors in Architecture Description Languages (ADLs), such as
Rapide [11], [12] and Wright [1], when considering exclusively the characteristics of
interaction support. While the role of middleware platform characteristics in ADLs
have been recognized in [14], mechanisms to systematically separate and relate
platform-independent and platform-specific descriptions have not been proposed in
the scope of the work on Software Architecture.

8 Concluding Remarks

We have argued previously [2] that the architectural concept of abstract platform
should have a prominent role in MDA development. An abstract platform defines
platform characteristics that are considered at the particular level of platform-
independence, and may also serve as starting point for platform-specific realization.

Design language concepts and characteristics of abstract platforms are interrelated.
Therefore, careful selection of a design language is indispensable for the beneficial
exploitation of the PIM/PSM separation and the definition of abstract platforms.

Often, some platform characteristics are assumed implicitly in platform-
independent designs. This may lead to PIMs that cannot be reused for different
platforms or it may lead to PIMs that cannot be directly compared and integrated. It
may also lead to transformations that cannot be reused. Platform characteristics
assumed in platform-independent designs are better understood and controlled by
designers if the characteristics of the abstract platform are explicitly represented in
abstract platform definitions. Furthermore, explicitly identifying an abstract platform
brings attention to balancing between two conflicting goals: (i) platform-independent
modelling, and (ii) platform-specific realization.

We have discussed how to support the concept of abstract platform in standard
UML, through both the implicit and the explicit abstract platform definition
approaches. In the implicit definition approach, the semantic variation points of UML
should either be resolved or should be considered irrelevant for deriving intended
abstract platform characteristics. UML Profiles can be useful in this approach to
specialise design concepts, and manage and package abstract platforms. In the explicit
definition approach, UML 2.0’s composite structures are useful both for defining
abstract platforms from an external and from an internal perspective. Composite
structures have been a useful addition to UML 2.0. Nevertheless, we have identified
some limitations with respect to the level of abstraction that can be obtained in the
representation of abstract platforms with composite structures. In addition, UML 2.0
still lacks some notion of behaviour conformance in order to relate behaviours defined
at a high-level of abstraction and the refined realizations of these behaviours.
Consequently, we cannot formally assess the correctness of abstract platform
realizations.

 Platform-Independent Modelling in MDA: Supporting Abstract Platforms 187

We have presented an example in UML in which a number of abstract platforms
can be combined, both in the implicit and the explicit abstract platform definition
approaches. We intend to investigate further modularisation criteria for abstract
platform definitions, aiming at obtaining a reference architecture for abstract platform
definition. A designer should then be able to compose an abstract platform from
abstract platform definition modules. This modularisation would ideally be preserved
in transformation specifications and ultimately at platform-specific level.

Acknowledgements

This work is part of the Freeband A-MUSE project. Freeband (http://www.
freeband.nl) is sponsored by the Dutch government under contract BSIK 03025. This
work has also been partly supported by the European Commission within the MODA-
TEL IST project (http://www.modatel.org).

References

1. Allen, R. J., Garlan, D.: A Formal Basis for Architectural Connection. ACM Transactions
on Software Engineering and Methodology, Vol. 6, No. 3 (1997) 213−219

2. Almeida, J. P. A., van Sinderen, M., Ferreira Pires, L., Quartel, D.: A systematic approach
to platform-independent design based on the service concept. In: Proceedings 7th IEEE
Intl. Enterprise Distributed Object Computing Conference (EDOC 2003). IEEE Computer
Society, Los Alamitos, CA (2003) 112−123

3. Almeida, J. P. A., van Sinderen, M., Ferreira Pires L.: The role of the RM-ODP
Computational Viewpoint Concepts in the MDA approach. In: Proceedings of the 1st
European Workshop on Model-Driven Architecture with Emphasis on Industrial
Applications (MDA-IA 2004). CTIT Technical Report TR-CTIT-04-12. University of
Twente, the Netherlands (2004) 43−51

4. Arango, G.: Domain Analysis: from Art Form to Engineering Discipline. ACM SIGSOFT
Software Engineering Notes, Vol. 14, No. 3 (1989) 152−159

5. Elrad, T., Filman, R. E., Bader, A. (eds.), Communications of the ACM, Special Section
on Aspect-Oriented Programming, Vol. 44, No.10 (2001) 29−97

6. Ferreira Pires, L.: Architectural Notes: a framework for distributed systems development,
Ph.D. Thesis. University of Twente, Enschede, the Netherlands (1994)

7. ITU-T / ISO: Open Distributed Processing - Reference Model - Part 2: Foundations, ITU-
T X.902 | ISO/IEC 10746-2 (1995)

8. ITU-T / ISO: Open Distributed Processing - Reference Model - Part 3: Architecture, ITU-
T X.903 | ISO/IEC 10746-3 (1995)

9. ITU-T / ISO: Open Distributed Processing - Reference Model - Enterprise Language, ITU-
T X.901 | ISO/IEC 15414:2002 (2001)

10. ITU-T: Recommendation Z.100 - CCITT Specification and Description Language.
International Telecommunications Union (2002)

11. Luckham, D., Kenney, J., Augustin, L., Vera, J., Bryan, D., Mann, W.: Specification and
Analysis of System Architecture Using Rapide. IEEE Transactions on Software
Engineering, Vol. 21, No. 4 (1995) 336−355

12. Luckham D., Vera, J.: An Event-Based Architecture Definition Language. IEEE
Transactions on Software Engineering Vol. 21, No. 9 (1995) 717−734

188 J.P. Almeida et al.

13. Microsoft Corporation: Microsoft .NET Remoting: A Technical Overview (2001),
available at http://msdn.microsoft.com/library/en-us/dndotnet/html/hawkremoting.asp

14. Di Nitto, E., Rosenblum D.: Exploiting ADLs to Specify Architectural Styles Induced by
Middleware Infrastructures. In: Proceedings of the 21st International Conference on
Software Engineering (ICSE’99). Los Angeles, CA (1999)

15. Object Management Group: Model driven architecture (MDA), ormsc/01-07-01 (2001)
16. Object Management Group: Common Object Request Broker Architecture: Core

Specification, Version 3.0, formal/02-12-06 (2002)
17. Object Management Group: CORBA Component Model, Version 3.0, formal/02-06-65

(2002)
18. Object Management Group: MDA-Guide, Version 1.0.1, omg/03-06-01 (2003)
19. Object Management Group: Meta Object Facility (MOF) 2.0 Core Specification, ptc/03-

10-04 (2003)
20. Object Management Group: Meta Object Facility (MOF) Specification, Version 1.4,

formal/02-04-03 (2002)
21. Object Management Group: MOF 2.0 Query / Views / Transformations RFP, ad/2002-04-

10 (2002)
22. Object Management Group: Unified Modelling Language: Object Constraint Language

Version 2.0, Draft Adopted Specification, ptc/03-08-08 (2003)
23. Object Management Group: UML 2.0 Superstructure, ptc/03-08-02 (2003)
24. Object Management Group: UML Profile for Enterprise Distributed Object Computing

Specification, ptc/02-02-05 (2002)
25. Object Management Group: Unified Modelling Language (UML) Specification:

Infrastructure, Version 2.0, ptc/03-09-15 (2003)
26. Object Management Group: Unified Modelling Language (UML) Specification, Version

1.5, formal/03-03-01 (2001)
27. Sun Microsystems: Java(TM) Message Service Specification Final Release 1.1 (2002),

available at http://java.sun.com/products/jms/docs.html
28. World Wide Web Consortium: SOAP Version 1.2 Part 1: Messaging Framework, W3C

Proposed Recommendation (2003), available at http://www.w3.org/TR/soap12-part1
29. World Wide Web Consortium: Web Services Description Language (WSDL) 1.1, W3C

Note (2001), available at http://www.w3.org/TR/wsdl

Context-Driven Model Refinement

Dennis Wagelaar�

Vrije Universiteit Brussel, Pleinlaan 2,
1050 Brussels, Belgium

dennis.wagelaar@vub.ac.be

Abstract. An important drive for Model-Driven Architecture is that
many software applications have to be deployed on a variety of platforms
and within a variety of contexts in general. Using software models, e.g.
described in the Unified Modeling Language (UML), one can abstract
from specific platforms. A software model can then be transformed to
a refined model, given the context in which it should run. Currently,
each target context requires its own model transformation. Only a lim-
ited number of contexts can be supported in this way. We propose a
context-driven modelling framework that models each target context in
a context model, described in the Web Ontology Language (OWL). Mul-
tiple reusable transformation rules are used, which are annotated with
context constraints, based on the OWL context model. The framework
can automatically select the transformation rules that are applicable for
a concrete context.

1 Introduction

The Model-Driven Architecture (MDA) allows for mapping a high-level software
design to a specific implementation platform. Model transformations are used
to refine a Platform-Independent Model (PIM) to a Platform-Specific Model
(PSM). Several layered PSMs can be used to gradually refine the design.

An important drive for MDA is that a lot of software has to run within a
variety of computing contexts. The vision of Ambient Intelligence only increases
this variety, with many portable and embedded devices such as personal digital
assistants (PDAs), smartphones and embedded computers in cars and houses.
For our purposes, context includes the software/hardware platform on which the
software must run, but also other factors, such as required run-time qualities
(e.g. adaptability, performance, security, etc.) and user preferences (e.g. chosen
software features).

In current MDA approaches [1], each target platform requires its own (set of)
model transformation(s). This means that for each new target platform, at least
one new model transformation is needed, even if that platform is only a variant

� The author’s work is part of the CoDAMoS project, which is funded by the Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders (IWT-
Flanders).

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 189–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

190 D. Wagelaar

of another, already supported platform (e.g. J2ME Personal Profile1 is a variant
of Java). In practice, this means that only a relatively small number of general
platforms can be targeted, e.g. Java or C++. Targeting very specific platforms,
e.g. the previously mentioned J2ME Personal Profile 1.0, is not feasible because
of the maintenance overhead, even though such precise targeting can result in
PSM that is better optimised for the given context.

Looking into the model transformations themselves, it appears that they can
often be made reusable over multiple platforms and it is only how they are config-
ured that makes them applicable to only one platform. For example, one model
transformation could target all Java 2 platforms by transforming “to-many” as-
sociation ends in the Unified Modeling Language (UML) to attributes using the
Java 2 Collections framework. If this transformation is configured to be applied
in combination with a transformation that targets the Java Swing framework,
the target platform is already limited to J2SE for the desktop computer2. The
fact that each configuration of model transformations is also maintained by hand,
makes that the problem of limited platform support remains.

We propose a context-driven modelling framework that can automatically
select appropriate transformation rules for a concrete context and configure them
into a context-optimised transformation. The developer can define a number
of alternative refinement transformation rules. These transformation rules are
annotated with context constraints within which the transformation will work.
These context constraints, as well as the concrete context description, are based
upon an explicit context model. This context model is expressed in the Web
Ontology Language (OWL) [2], which is an extensible language for describing
ontologies. Furthermore, we use the OWL-DL variant, which corresponds to
description logics [3], such that computational completeness can be guaranteed.
The context model forms a basis for describing contexts in general and can
be extended to include the specific context information that is relevant for a
particular application domain. An automatic reasoner, such as RACER [4], can
be used to verify whether a concrete context satisfies the constraints of a model
transformation. Subsequently, one transformation rule is selected for each group
of remaining transformation alternatives, based on how close its constraint lies
to the actual context.

Section 2 discusses how computing context can be modelled and section 3
explains how model transformations can be augmented with context constraints.
In section 4 the mechanism for selecting model transformations is explained. Sec-
tion 5 discusses related work and section 6 states the conclusions for this paper.

2 Context Modelling

In order to reason about context and context constraints, an ontology of com-
puting context is used. Ontologies can serve as a common vocabulary for a
domain [5]. The relationships between the ontology elements can be used to rea-

1 http://java.sun.com/j2me/
2 http://java.sun.com/j2se/

Context-Driven Model Refinement 191

Fig. 1. Part of the context ontology for describing platforms and users

son about elements based on that ontology. A context ontology allows one to
base expressions about a concrete context on the vocabulary expressed by the
ontology. By using a shared model of context, we can reason about the relation-
ship between a context description and a context constraint, even if the two do
not have a direct relationship. An example context constraint is that the Java 2
Collections framework needs to be present. An example of a context description
includes a Sharp Zaurus PDA. Since both the context constraint and the context
description refer to the context ontology to explain what the Java 2 Collections
framework resp. the Zaurus PDA is, one can derive whether the Zaurus PDA
satisfies the Java 2 Collections framework constraint.

2.1 A Context Vocabulary

Before modelling any specific context or context properties, a basic context struc-
ture needs to be defined. In this paper, the context ontology described in [6] is
used for this purpose3. This ontology is in turn inspired by the User Agent
Profile specification (UAProf) [7] and Composite Capability/Preference Profiles
(CC/PP) [8], both of which are standards intended to describe target platforms.

3 Other ontologies can be used, but it is necessary to use the same ontology for de-
scribing context and constraints on that context.

192 D. Wagelaar

Fig. 2. An ontology describing Java virtual machines

The ontology is expressed in OWL, an extensible standard for describing ontolo-
gies. OWL has a variant, called OWL-DL, that corresponds to description logics,
allowing for automated reasoning about the ontology. The ontology used com-
plies to this OWL-DL variant. The part of the ontology that models platforms
and users is shown in Fig. 1.

The platform concept in this ontology can provide software and hardware.
The ’*’ next to the “providesSoftware” relationship denotes a one-to-many re-
lationship. Software and hardware are broken down into different sub-concepts.
This is denoted by the special “isa” subsumption relationship, e.g. the set of
operating systems subsumes the set of software in general. The software can
impose requirements on the platform, e.g. the need for a network resource, a
particular virtual machine or a user interface rendering engine that supports
voice communication. This is denoted by the “requiresPlatform” relationship,
which points to a description of the required platform. The user concept has
profile elements, amongst others, which describes the user. A special case of a
profile is a preference profile, which describes user preferences only.

The ontology can be extended for particular domains of platforms, such as
Java virtual machines. Fig. 2 shows such an ontology. The “VirtualMachine”
concept starts with “context:” to indicate it refers to the “VirtualMachine” con-
cept from the main context ontology. The “Java” virtual machine can be sub-
divided in many different configurations. “Java2” refers to the virtual machines
that run Java 1.2 or up. “Java2” is split up into “J2ME”, “J2SE” and “J2EE”,
which is based on “J2SE”. In the ontology, two other concepts are introduced:
“AWT” and “Swing”. These refer to the Java Abstract Window Toolkit (AWT)
resp. Swing rendering engines. Since some Java virtual machine configurations
already include these, instances of such virtual machines also serve as instances
of the AWT and/or Swing rendering engine. This is represented in the ontology
by defining additional “isa” relationships to the AWT or Swing rendering engine
from the virtual machines.

In order to discriminate on user profile data as well, an ontology extension
for user profiles can be defined. For the purpose of this paper, we will use a very

Context-Driven Model Refinement 193

Fig. 3. An example ontology for describing user profiles

Fig. 4. Example context description for the author using the Sharp Zaurus PDA

simple profile ontology, describing only the languages that a user can use and/or
prefers to use. This ontology extension is depicted in Fig. 3.

2.2 Modelling Concrete Contexts

The actual context for the PSM can now be described by instances of the context
concepts. Fig. 4 shows an example context description for a Sharp Zaurus PDA.
This PDA has a Personal Profile (PP) J2ME virtual machine installed.

The concepts “Platform” and “PP” are taken from the context resp. Java on-
tologies. The instances, “zaurusC860” and “zaurusPP”, are depicted as rounded
rectangles and are instances of the “Platform” and “PP” classes. This is depicted
by the “io” relationships. The “zaurusC860” platform has a “providesSoftware”
relationship with the “zaurusPP” Java Personal Profile virtual machine. The
“zaurusC860” platform provides a “touchscreen” and a “keyboard” I/O device,
through which the user “dennis” interacts with the platform. Finally, “dennis”
prefers to communicate in “dutch”.

3 Modelling Context Dependencies

Model transformations can now define constraints on instances of the ontol-
ogy concepts. This is done by defining new, completely specified concepts. Such
concepts have necessary and sufficient conditions in addition to any necessary

194 D. Wagelaar

conditions. For example, whereas it is necessary that each “J2ME” instance is
also an instance of “Java2” (depicted by the “isa” relationship in Fig. 2), being a
“Java2” instance is not sufficient for also being a “J2ME” instance. The notation
for describing conditions as used in the Protégé tool [9] is also used here.

In order to check if the current platform has a “Java2” class virtual machine,
a concept “Java2Platform” can be defined, which is a sub-concept of “Platform”
(necessary) and provides a “Java2” virtual machine (necessary and sufficient):

Java2P latform � context : P latform

≡ ∃ context : providesSoftware platform : Java2

Whenever a “Platform” instance fulfils the condition of providing a “Java2”
virtual machine, it can be classified as an instance of “Java2Platform”. This
classification can be performed by automatic reasoners. This way, concrete plat-
form instances can be matched against a completely defined constraint concept.
If the platform instance classifies as an instance of the constraint concept, then
the constraint holds for that instance. For example, the “zaurusC860” platform
from Fig. 4 classifies as an instance of “Java2Platform”, since “zaurusPP” is an
instance of “PP”, which is a sub-class of “Java2”.

3.1 Example PIM

Fig. 5 shows part of a PIM for a simple Breakout game, expressed in UML
1.5 [10]. The objective of the game is to remove all the bricks from the screen by
hitting them with the ball. The ball must be bounced back with the paddle, which
is controlled by the player. If the ball falls down the screen (paddle has missed),
the game is over. In the design, the “Field” class represents the screen, which
has composition associations with a “Ball”, a “Paddle” and multiple “Bricks”.
A separate “view” package has been modelled to separate the graphical user
interface from the game model itself. AWT and Swing implementations of the
“view” package have also been modelled, but are not shown in the diagram. Note
that our example PIM contains platform-specific elements that rely on the AWT
and Swing rendering engine. Our notion of PIM includes all models that have
not (yet) committed to a specific platform.

The example PIM contains several elements that are not available in the
programming environment that is needed for the target platform4. These ele-
ments are the “process”, “Observer”, “Observable”, “subscribe” and “thread”
stereotypes, the “Integer” and “Boolean” Object Constraint Language (OCL)
data types, association relationships and specifications of operations (e.g. in
OCL, a dynamic diagram or an Action Language). Model transformations can
be defined to translate each of these elements to one or more elements that are
available in the target programming environment. In addition, the PIM contains
several platform-specific elements, such as the view implementations relying on
Java AWT and Swing. The selection of relevant platform-specific elements can

4 The programming environment comprises the programming language and available
libraries.

Context-Driven Model Refinement 195

<< process >>

BreakOut

<< create >> + BreakOut ():BreakOut

model

Brick

Dimension

+ width :Integer
+ height :Integer

Point

+ x:Integer
+ y:Integer

Paddle Field

+ newGame ():

field+

sprite+

*

<< Observable >>

Sprite

<< thread >>

Ball

+ running :Boolean = false

+ run ():

size+

position+

view

<< interface >>

ViewFactory

+ createSpriteView (sprite :Sprite):SpriteView
+ createFieldView (field :Field):FieldView
+ createBallView (ball :Ball):BallView
+ createPaddleView (paddle :Paddle):PaddleView
+ createBrickView (brick :Brick):BrickView

FieldView

+ onSpriteChange (sprite :Sprite):

BallView PaddleView

+ drag (x :Integer):

factory+

BrickView

<< Observer >>

SpriteView
(from breakout ::view)

+ onPositionChange (pos :Point):
+ onSizeChange (size :Dimension):
+ onFieldChange (field :Field):

viewFactory+

model

+

<< subscribe >>

Fig. 5. Example PIM class diagram for a breakout game

also be performed by model transformations. Examples of some of these model
transformations will be discussed below. The Atlas Transformation Language
(ATL) [11], which has a simple, rule-based syntax, will be used to express these
examples.

3.2 Example Model Transformations

A model transformation for translating UML 1.5 associations to correspond-
ing attributes for Java could use the Java 2 Collections framework to imple-
ment a one-to-many association. The following transformation rules use the
java.util.List interface and the implementing java.util.ArrayList class
to achieve a one-to-many relationship5:

r u l e Assoc i a t i onEndSing leAt t r ibut e {
from s : INMODEL! Assoc iat ionEnd (s . i sNav i gab l e and s . i s S i n g l e ())
to t : OUTMODEL! Attr ibute (

name <− s . name ,
owner <− s . navigableFrom () ,
type <− s . pa r t i c i pan t ,
v i s i b i l i t y <− s . v i s i b i l i t y ,

5 Note that, in ATL, additional headers are needed and rules are necessary for each
model element that needs to be copied/transformed. Only the rules that perform
actual transformation are shown here for brevity.

196 D. Wagelaar

ownerScope <− s . targe tScope ,
changeab i l i t y <− s . changeab i l i t y)

}

r u l e Assoc iat ionEndArrayList {
from s : INMODEL! Assoc iat ionEnd (s . i sNav i gab l e and not s . i s S i n g l e ())
us ing { c o l l e c t i o n : INMODEL! I n t e r f a c e = INMODEL! I n t e r f a c e . a l l I n s t a n c e s ()

−>s e l e c t (c | c . name=’Co l l e c t i on ’)−> f i r s t () ; }
to t : OUTMODEL! Attr ibute (

name <− s . name ,
owner <− s . navigableFrom () ,
type <− c o l l e c t i o n ,
v i s i b i l i t y <− s . v i s i b i l i t y ,
ownerScope <− s . targe tScope ,
changeab i l i t y <− s . changeab i l i t y ,
i n i t i a l V a l u e <− v) ,

v : OUTMODEL! Express ion (
language <− ’ java ’ ,
body <− ’ new java . u t i l . ArrayLi st () ’)

}

he lp e r context INMODEL! Assoc iat ionEnd de f : navigableFrom () :
INMODEL! C l a s s i f i e r =

s e l f . a s s o c i a t i o n . connection−>s e l e c t (x | x<>s e l f)−> f i r s t () . p a r t i c i p an t ;

h e lp e r context INMODEL! Assoc iat ionEnd de f : i s S i n g l e () : Boolean =
s e l f . mu l t i p l i c i t y . range−>s e l e c t (r | r . upper<>1)−>isEmpty () ;

The transformation rules translate only the navigable association ends to
attributes. The first rule translates all association ends with an upper multiplicity
range of “1” to simple attributes. The second rule translates all association ends
with an upper range other than “1” to Java Lists. The from keyword indicates
the element to read from the source model, whereas the to keyword indicates
the element to be created in the target model. The INMODEL and OUTMODEL in
the transformation refer to the meta-models used, which is the UML 1.5 meta-
model in both cases. Two helper functions have been defined to reuse the OCL
expressions for determining the class from which the association end can be
navigated (navigableFrom())6 and whether an association end only points to a
single target (isSingle()). The second rule has a using clause, which locates
the Java Collection interface. This Collection interface is then used as the type
of the attribute that is created. The ArrayList class is used for the initial value
of this attribute.

The AssociationEndSingleAttribute transformation rule does not use any
Java-related elements, and has no platform dependencies. The AssociationEnd-
ArrayList rule uses the Java 2 Collections framework and therefore needs at
least a “Java2” virtual machine (see Fig. 2). This corresponds with the “Java2-
Platform” constraint given at the beginning of this section. An alternative for
the AssociationEndArrayList rule could use the java.util.Vector class to
implement the one-to-many association:

r u l e Associat ionEndVector {
from s : INMODEL! Assoc iat ionEnd (s . i sNav i gab l e and not s . i s S i n g l e ())
us ing { vector : INMODEL! Class = INMODEL! Class . a l l I n s t an c e s ()

−>s e l e c t (c | c . name=’Vector ’)−> f i r s t () ; }
to t : OUTMODEL! Attr ibute (

name <− s . name ,

6 Only binary associations are considered.

Context-Driven Model Refinement 197

owner <− s . navigableFrom () ,
type <− vector ,
v i s i b i l i t y <− s . v i s i b i l i t y ,
ownerScope <− s . targe tScope ,
changeab i l i t y <− s . changeab i l i t y ,
i n i t i a lV a l u e <− v) ,

v : OUTMODEL! Express ion (
language <− ’ java ’ ,
body <− ’new java . u t i l . Vector () ’)

}

Because the Java Vector class was already available in Java 1.0, the platform
constraint can be relaxed to only requiring a Java virtual machine:

JavaP latform � context : P latform

≡ ∃ context : providesSoftware java : Java

4 Context-Driven Refinement

The mechanism that selects the appropriate model transformations is based
on Synthesis-Based Design [12] and its version for MDA transformations [13].
Synthesis-Based Design uses a design space of possible combinations of alterna-
tive design choices. The design choices are represented by model transformations
in this case. The transformations are grouped into sets of alternatives that rep-
resent the same functionality. This grouping can be done automatically, based
on a heuristic that checks the input specification of the transformation rules.
If certain transformation rules have the same input specification, they are con-
sidered to be alternatives. The transformation rules AssociationEndArrayList
and AssociationEndVector, given in subsection 3.2, have the same input speci-
fication (represented by the from part). Hence, they are considered to be alterna-
tives belonging to one group. The groups that are formed in this way only have
to be created once for a set of transformation rules and can be adapted manu-
ally afterwards. Each time a PSM has to be generated for a specific platform,
the existing transformation rules are considered, using the existing grouping in-
formation. An example grouping for the model transformations needed for our
example PIM is shown in Table 1.

The English, French, German and Dutch transformations are simple selec-
tion transformations that select their corresponding language package to be in-
cluded in the deployment. They form one group, since they take all language
package deployment information as input and differ only in which language
packages are copied back out. Similarly, the AWTView and SwingView transfor-
mations select the AWT resp. Swing view implementation from all view imple-
mentations. The AssociationEndArrayList and AssociationEndVector trans-
formations have already been discussed and form one group. The Accessors
transformation creates accessor operations (getters and setters) for each public
attribute. The Process transformation augments all classes with the “process”
stereotype with a “main” operation. The Thread transformation adds a real-
ization relationship to the java.lang.Runnable class to each class with the

198 D. Wagelaar

Table 1. Example model transformations grouping

English | French | German | Dutch

AWTView | SwingView

Accessors

AssociationEndArrayList | AssociationEndVector

Process

Thread

Observer | PropertyChangeListener

DataTypes

“Thread” stereotype. The Observer and PropertyChangeListener transfor-
mations both implement the “Observer”, “Observable” and “subscribe” stereo-
types. The first transformation uses the Java 1.0 java.util.Observer interface
and the java.util.Observable class to accomplish this, while the latter uses
the java.beans.PropertyChangeListener interface and corresponding classes.
Finally, the DataTypes transformation translates the OCL data types into Java
data types.

From each group, one model transformation is selected. First, all transforma-
tion constraints are checked against the platform, after which the non-matching
transformations are discarded. Note that, if no transformations are left for a
particular group after this step, no PSM can be generated for the given context.
Each group of remaining alternative transformations is sorted by context rele-
vance, such that the most relevant transformation alternative appears at the top
of the list. The context relevance is determined by subsumption of constraint
concepts. If a constraint concept defines a subset of another constraint concept,
then that constraint is considered more context-specific. Consider the following
context constraint:

Java2Personal � context : P latform

≡ (∃ context : providesSoftware java : Java2) �
(∃ context : providesSoftware java : PersonalJava)

This constraint demands either a “Java2” or a “PersonalJava” VM, whereas
the “JavaPlatform” constraint (see before) demands a “Java” class VM. Both
“Java2” and “PersonalJava” are subconcepts of “Java”. The set defined by the
union of “Java2” and “PersonalJava” is still a subset of “Java”, so the “Java2-
Personal” concept can be classified as a subconcept of “JavaPlatform”. Again,
existing automatic reasoners can be used to classify the subsumption taxonomy
of concepts as they are defined by the constraints.

It is possible that the context constraints of alternative transformations do
not contain enough information to determine whether one constraint subsumes
another. Consider the following example constraint:

AWTPlatform � context : P latform

≡ ∃ context : providesSoftware java : AWT

Context-Driven Model Refinement 199

Table 2. Example model transformations selected and sorted

Dutch

AWTView

AssociationEndArrayList

Accessors

Process

Thread

PropertyChangeListener

DataTypes

Compared to the “Java2Platform” constraint mentioned earlier, one cannot clas-
sify either as a subset of the other. In such a case, the group of transformation
alternatives (see Table 1) will first be reduced to those alternatives of which the
constraints are leafs in the constraint concept taxonomy. From these alternatives,
the alternative specified left-most in the initial group will be chosen. Consider
three transformation alternatives, A, B and C, which have the “JavaPlatform”,
“Java2Platform” and “AWTPlatform” constraint respectively. If a taxonomy is
created for these constraints, “Java2Platform” and “AWTPlatform” are both
direct subconcepts of “JavaPlatform”. The group of alternatives is reduced to B
and C, since their constraints are the leafs in the taxonomy. If alternative B is
listed before alternative C in the initial group of alternatives, then alternative B
will be chosen.

Since some model transformations may depend on the result of other model
transformations, they need to be ordered. The transformation dependencies can
also be checked automatically by a heuristic that checks if the input specifica-
tion of a transformation may overlap with the output specification of another
(represented by the to part). The output specification of the AssociationEnd-
ArrayList transformation states that it creates new attributes. If another model
transformation, Accessors, creates accessor operations for each public attribute,
then its input specification could match elements generated by Association-
EndArrayList. Hence, AssociationEndArrayList is placed before Accessors.
If no decision can be made on whether to put one transformation before an-
other, the order is left unchanged. This way, the developer can already pre-sort
the groups of transformations manually and no manual intervention is needed for
each context. The sorted list of chosen transformations for the example platform
from Fig. 4 is shown in Table 2.

The AssociationEndArrayList transformation was chosen over the Asso-
ciationEndVector transformation, because it requires a “Java2” VM instead of
any “Java” VM. For the same reason, the PropertyChangeListener transforma-
tion is chosen over the Observer transformation. Also, the transformations have
been sorted according to input-output dependencies: the Accessors transfor-
mation has been placed after AssociationEndArrayList. The Dutch selection
transformation takes in all kinds of elements and can also output all kinds of
elements, so the sorting heuristic could not determine what to do with it. In this

200 D. Wagelaar

case, the developer knows that this rule does not depend on any transformation
output, so it remains pre-sorted as the first transformation to execute. The other
transformations don’t generate any elements that may be matched by the input
specification of another transformation, so their order is also not adapted.

5 Related Work

In Generative Programming [14] and Step-Wise Refinement [15], features and
feature models are used to model a family of software systems instead of a single
system. Features can be optional or mandatory for a software system, depending
on the presence of other features. In our framework, features are implicitly gen-
erated or selected by model transformations, which are chosen based on context
constraints. Feature models can be used to verify if the chosen transformations
represent a valid set of features.

The lack of explicit platform models is discussed in [16]. The notion of ab-
stract platform is introduced, which describes a set of elements to model a PIM
against. This set of elements includes design artifacts that are available in a
target platform (classes, interfaces) and design constructs that can be mapped
to that platform (stereotypes, profiles), e.g. with model transformations. The
goal of abstract platforms is to ease platform-independent modelling, whereas
our context models are meant to decouple context information, which includes
the platform, from model transformations.

In [17], platform selection rules are discussed, which allow for pre-selecting
a number of target platforms. In that way, less platforms need to be supported.
In our case, platform selection rules can be used to narrow down the amount
of platform domain aspects (e.g. Java virtual machines) that need to be mod-
elled for a particular application domain (e.g. instant messaging). This does
not conflict with the envisioned ambient intelligence scenario that targets an
open-ended infrastructure of unanticipated devices, since this is supported by
in-depth modelling of platform domain aspects, not the amount of aspects that
are modelled.

In [18], an infrastructure for combining UML models and ontologies is intro-
duced. Such as infrastructure can be useful for a better integration of platform
constraints into model transformation languages.

The KobrA method [19] is an approach for component-based product line
engineering with UML. It uses pattern-based refinements for design elements.
OO-Method [20] also introduces a pattern-based approach for design refinement
and code generation. PRISMA [21] is a modelling approach that can be used to
model context data. Our approach differs in that it uses refinement alternatives,
such that context-based optimisation is possible.

The Catalysis approach [22] is a UML-based development method for com-
ponent-based systems. An important part of this method consists of refinement
of the model elements. As such, our context-driven modelling framework can be
used as a means to refine the model elements in a context-optimised way.

The Context Ontology Language (CoOL) [23] is an ontology-based context
modelling approach, which uses the Aspect-Scale-Context (ASC) model where

Context-Driven Model Refinement 201

each aspect (e.g. spatial distance) can have several scales (e.g. kilometre scale or
mile scale) to express some context information (e.g. 20). Chen et al. [24] propose
a context broker architecture (CoBrA) using an ontology to describe persons,
places and intentions. Gu et al. [25] present a service-oriented context-aware
middleware (SOCAM) based on a context model with person, location, activity
and computational entity (such as a device, network, application, service, etc.)
as basic context concepts. Henricksen and Indulska [26] propose a context model
that describes context based on several types of facts (e.g. sensed, static and
profiled) subject to constraints and quality annotations. The context ontology
used in this paper puts more focus on the platform description, which is central
to MDA.

6 Conclusion and Future Work

This paper has introduced a context-driven modelling framework that can au-
tomatically choose the most context-specific model transformations from a set
of alternatives. Instead of providing a set of alternative model transformations,
multiple sets of alternative model transformations are provided, which together
can form a complete model transformation. In this way, many more computing
contexts can be supported with a similar design effort.

The proposed modelling framework fits within the MDA vision in that it also
uses several layered refinement transformations. Based on a context model de-
scribed in OWL, specific transformations are chosen to transform a PIM to a PSM.

The selection mechanism relies on the classification of a taxonomy of context
constraints. This classification needs to be done only once for a set of available
model transformations and can then be reused for each concrete context. Fur-
thermore, the constraint checking mechanism implemented by RACER is highly
optimised. It should scale no worse than the matching algorithm needed for the
model transformations themselves.

In the future, a configuration language will be introduced to support the
transformation selection and sorting mechanism. This configuration language
will express the inter-dependencies of the model transformations and will dis-
criminate between mandatory (e.g. an accessor method generator) and non-
mandatory transformations (e.g. a language support selection transformation).
This configuration language will probably be based upon feature models. MOF
can be used for the description of the abstract syntax, such that the same reposi-
tory that is used for storing the various MDA models can also be used for storing
the configuration model.

Acknowledgement

The author would like to thank Ragnhild van der Straeten and the anonymous
review committee for reviewing this paper. Many improvements have been made
based on their comments. In addition, the author would like to thank Willem
Hajenius and Wouter Heyse for their work on the breakout game example case
used in this paper.

202 D. Wagelaar

References

1. Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches. In:
OOPSLA 2003 Workshop on Generative Techniques in the context of Model Driven
Architecture. (2003)

2. Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide.
World Wide Web Consortium. (2004) W3C Recommendation 10 February 2004.

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge, UK (2003)

4. Möller, R., Haarslev, V.: Description Logics for the Semantic Web: Racer as a
Basis for Building Agent Systems. Künstliche Intelligenz (2003) 10–15

5. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowl-
edge Acquisition 5 (1993) 199–220

6. Preuveneers, D., den Bergh, J.V., Wagelaar, D., Georges, A., Rigole, P., Clerckx,
T., Berbers, Y., Coninx, K., Jonckers, V., Bosschere, K.D.: Towards an extensible
context ontology for Ambient Intelligence. In: Proceedings of the Second European
Symposium on Ambient Intelligence, Eindhoven, The Netherlands, Springer-Verlag
(2004) 148–159

7. Open Mobile Alliance: User Agent Profile 2.0 Specification. (2003) Version 20-
May-2003.

8. Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M.H., Tran, L.:
Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies
1.0. World Wide Web Consortium. (2004)

9. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W., Musen, M.A.:
Creating Semantic Web Contents with Protege-2000. IEEE Intelligent Systems 16
(2001) 60–71

10. Object Management Group, Inc.: Unified Modeling Language Specification. (2003)
Version 1.5 (formal/03-03-01).

11. Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.: First experiments
with the ATL model transformation language: Transforming XSLT into XQuery.
In: OOPSLA 2003 Workshop on Generative Techniques in the context of Model
Driven Architecture. (2003)

12. Tekinerdoğan, B., Akşit, M.: Synthesis Based Software Architecture Design. In
Akşit, M., ed.: Software Architectures and Component Technology, Dordrecht, The
Netherlands, Kluwer Academic Publishers (2001) 143–173

13. Kurtev, I., van den Berg, K.: A Synthesis-Based Approach to Transformations
in an MDA Software Development Process. In Rensink, A., ed.: CTIT Technical
Report TR-CTIT-03-27, Enschede, The Netherlands, University of Twente (2003)
121–126

14. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. 1st edn. Addison Wesley, Reading, Massachusetts, USA (2000)

15. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. In:
Proceedings of the 25th International Conference on Software Engineering (ICSE
2003), Portland, Oregon, USA, IEEE Computer Society (2003) 187–197

16. Almeida, J.P., Dijkman, R., van Sinderen, M., Pires, L.F.: On the Notion of
Abstract Platform in MDA Development. In: The 8th International IEEE Enter-
prise Distributed Object Computing Conference, Monterey, California, USA, IEEE
Computer Society (2004) 253–263

Context-Driven Model Refinement 203

17. Tekinerdoğan, B., Bilir, S., Abatlevi, C.: Integrating Platform Selection Rules
in the Model-Driven Architecture Approach. In Aßmann, U., ed.: Proceed-
ings of Model Driven Architecture: Foundations and Applications (MDAFA
2004), Linköping, Sweden, Research Center for Integrational Software Engineer-
ing, Linköping University (2004) 184–200

18. Bézivin, J., Devedz̆ić, V., Djurić, D., Favreau, J., Gas̆ević, D., Jouault, F.: An M3-
Neutral infrastructure for bridging model engineering and ontology engineering.
In: First International Conference on Interoperability of Enterprise Software and
Applications (INTEROP-ESA’05), Geneva, Switzerland, Springer-Verlag (2005)

19. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R.,
Müthig, D., Paech, B., Wüst, J., Zettel, J.: Component-Based Product Line Engi-
neering with UML. 1st edn. Addison Wesley, Reading, Massachusetts, USA (2001)

20. Pelechano, V., Pastor, O., Insfrán, E.: Automated code generation of dynamic
specializations: an approach based on design patterns and formal techniques. Data
and Knowledge Engineering 40 (2002) 315–353

21. Martinez, J.J., Salavert, I.R.: A Conceptual Model for Context-Aware Dynamic
Architectures. In: Proceedings of the 23rd International Conference on Distributed
Computing Systems Workshops (ICDCSW’03), Providence, Rhode Island, USA,
IEEE Computer Society (2003) 138–143

22. D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML: The
Catalysis(SM) Approach. Addison Wesley, Reading, Massachusetts, USA (1998)

23. Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL: A Context Ontology Lan-
guage to enable Contextual Interoperability. In: Proceedings of 4th IFIP WG 6.1
International Conference on Distributed Applications and Interoperable Systems
(DAIS2003), Paris, France, Springer-Verlag (2004) 236–247

24. Chen, H., Finin, T., Joshi, A.: An Ontology for Context-Aware Pervasive Com-
puting Environments. Knowledge Engineering Review 18 (2004) 197–207 Special
Issue on Ontologies for Distributed Systems.

25. Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An Ontology-based Context Model
in Intelligent Environments. In: Proceedings of Communication Networks and
Distributed Systems Modeling and Simulation Conference (CNDS’04), San Diego,
California, USA (2004) 270–275

26. Henricksen, K., Indulska, J.: A Software Engineering Framework for Context-
Aware Pervasive Computing. In: Proceedings of the 2nd IEEE International
Conference on Pervasive Computing and Communications (PerCom’04), Orlando,
Florida, USA, IEEE Computer Society (2004) 77–86

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 204 – 219, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A UML Profile for OWL Ontologies

Dragan Djuri 1, Dragan Gaševi 1, Vladan Devedži 1, and Violeta Damjanovi 2

1 FON – School of Business Administration, University of Belgrade, POB 52,
Jove Ili a 154, 11000 Belgrade, Serbia and Montenegro
dragandj@gmail.com, gasevic@yahoo.com,

devedzic@galeb.etf.bg.ac.yu
2 Postal Savings Bank, 27.marta 71, Belgrade, Serbia and Montenegro

vdamjanovic@gmail.com

Abstract. The paper presents Ontology UML Profile (OUP); which, together
with Ontology Definition Metamodel (ODM), enables the usage of Model
Driven Architecture (MDA) standards in ontological engineering. Other similar
metamodels and UML profiles are based on ontology representation languages,
such as RDF(S), DAML+OIL, etc. However, none of these other solutions uses
the recent W3C effort – The Web Ontology Language (OWL). In our approach,
we firstly define the place of ODM and OUP in the context of the MDA four-
layer architecture and identify the main OWL concepts. Then, to support ODM,
we define OUP and describe its details. The proposed UML profile enables
usage of the well-known UML notation in ontological engineering more
extensively. We implemented an XSLT that transforms OUP ontologies into
OWL in order to provide a suitable tool support.

1 Introduction

The Semantic Web and its XML-based languages are the main directions of the future
Web development. Domain ontologies [1] are the most important part of the Semantic
Web applications. They are formal organization of domain knowledge, and in that
way enable knowledge sharing between different knowledge-base applications.
Artificial intelligence (AI) techniques are used for ontology creation, but those
techniques are more related to research laboratories, and they are unknown to wider
software engineering population.

In order to overcome the gap between software engineering practitioners and AI
techniques, there are a few proposals for UML usage in ontology development [2].
But, UML itself does not satisfy needs for representation of ontology concepts that
are borrowed from description logics, and that are included in Semantic Web
ontology languages (e.g. RDF, RDF Schema, OWL, etc.). The OMG’s Model Driven
Architecture (MDA) concept has the ability to create (using metamodeling) a family
of languages [3] that are defined in the similar way like the UML is. Accordingly, in
this paper, the authors briefly show a metamodel for ontology modeling language –
Ontology Definition Metamodel (ODM). This metamodel is defined using Meta-
Object Facility (MOF), and is based on the Web Ontology Language (OWL). Since
Unified Modeling Language (UML) is widely accepted as a modeling language, we
define a profile that supports ontology design – Ontology UML Profile. It is a
standard extension of UML, and is also based on MOF. Ontology UML Profile is

 A UML Profile for OWL Ontologies 205

intended to be used as a support to ODM, not as a stand-alone solution for Ontology
modeling.

The overview of the Semantic Web languages and OWL is given in the next
section, while the description of the MDA and MOF is in section three. In section four
we give a framework for our approach of the ontology language metamodel in the
MDA context and the overview of ontology metamodel definition. The details of
Ontology UML Profile are shown in the section five. Section six contains an XSLT-
based implementation example for transforming an ontology UML Profile into OWL,
as well as our experiences in using this transformation. The last section contains final
conclusions. This work is a part of the effort of the GOOD OLD AI research group
(http://goodoldai.org.yu/) in developing AIR - a platform for building intelligent
systems.

2 An Overview of the Semantic Web, Web Ontology Language,
MDA and MOF

The step beyond the World Wide Web is the Semantic Web [4], which will enable
machine-understandable data to be shared across the Net. The Semantic Web will be
powered by metadata, described by ontologies that will give machine-understandable
meaning to its data. Ontology is one of the most important concepts in knowledge
representation. It can be generally defined as shared formal conceptualization of
particular domain [1]. The World Wide Web and XML will provide the ontologies
with interoperability, and these interoperable ontologies will, in return, facilitate Web
that can “know” something.

Semantic Web architecture is a functional, non-fixed architecture [5]. Barnes-Lee
defined three distinct levels that incrementally introduce expressive primitives:
metadata layer, schema layer and logical layer [6]. Languages that support this
architecture and the place of OWL are shown in Figure 1.

Fig. 1. OWL in the Semantic Web architecture

Common data interoperability in present applications is best achieved by using
XML [7]. As shown in the Figure 1, XML supports syntax, while semantics is
provided by RDF, RDF Schema and mainly by OWL [8]. In order to provide
capabilities for unconstrained representation of the Web knowledge and, in the same

206 D. Djuri et al.

time, to support calculations and reasoning in finite time with tools that can be built
on the existing or soon available technologies, OWL introduces three increasingly
expressive sublanguages for various purposes: OWL Full (maximal expressiveness),
OWL DL (guaranties computational completeness) and OWL Lite (for starters).

Model Driven Architecture (MDA) [9] defines three viewpoints (levels of
abstraction) from which some system can be seen. From a chosen viewpoint, a
representation of a given system (viewpoint model) can be defined. These models are
(each corresponding to the viewpoint with the same name): Computation Independent
Model (CIM), Platform Independent Model (PIM) and Platform Specific Model (PSM).

OMG's MDA is based on the four-layer metamodeling architecture, and several
OMG’s complementary standards; which is shown in Figure 2. These standards are
Meta-Object Facility (MOF) [10], Unified Modeling Language (UML) [11] and XML
Metadata Interchange (XMI) [12]. Layers are: meta-metamodel (M3) layer,
metamodel (M2) layer, model (M1) layer and instance (M0) layer.

Fig. 2. MDA four-layer MOF-based metadata architecture

On the top of this architecture is the meta-metamodel (MOF). It defines an abstract
language and framework for specifying, constructing and managing technology
neutral metamodels. It is the foundation for defining any modeling language; such as
UML or even MOF itself. MOF also defines a framework for implementing
repositories that hold metadata (e.g. models) described by metamodels [10]. The main
aim of having four layers with common meta-metamodel is to support multiple
metamodels and models; to enable their extensibility, integration and generic model
management and metamodel management. Present software tools support for MDA is
concentrated primarily on UML as a graphical notation and MDA’s M1 layer, with no
concern of metamodeling layers [13].

 A UML Profile for OWL Ontologies 207

3 The Ontology Modeling Architecture

To be widely adopted by users and to succeed in real-world applications, knowledge
engineering and ontology modeling must catch up with mainstream software trends. It
will provide a good support in software tools and ease the integration with existing or
upcoming software tools and applications, which will add values to both sides. To be
employed in common applications, software knowledge management must be taken
out of laboratories and isolated high-tech applications and put closer to ordinary
developers. This issue has been addressed in more details in Cranefield’s papers [2].

MDA and its four-layer architecture provides a solid basis for defining metamodels
of any modeling language, therefore it is the straight choice to define an ontology-
modeling language in MOF. Such language can utilize MDA’s support in modeling
tools, model management and interoperability with other MOF-defined metamodels.
Present software tools do not implement many of the concepts that are the basis of
MDA. However, most of these applications, which are mostly oriented to the UML
and M1 layer, are expected to be enhanced in the next few years to support MDA.

Currently, there is a RFP (Request for Proposal) within OMG that tries to define a
suitable language for modeling Semantic Web ontology languages in the context of
MDA [14]. According to this RFP we give our proposal of such architecture [15]. In
our approach of ontology modeling in the scope of MDA, which is shown in Figure 3,
several specifications should be defined:

• Ontology Definition Metamodel (ODM)
• Ontology UML Profile – a UML Profile that supports UML notation for

ontology definition
• Two-way mappings between OWL and ODM, ODM and Ontology UML

Profile and from Ontology UML Profile to other UML profiles.

Fig. 3. Ontology modeling in the context of MDA and Semantic Web

208 D. Djuri et al.

We designed Ontology Definition Metamodel (ODM) to comprehend common
ontology concepts. A good starting point for ODM construction was OWL since it is
the result of the evolution of existing ontology representation languages and is a W3C
recommendation [8]. It is at the Logical layer of the Semantic Web [8], on top of RDF
Schema (Schema layer). In order to make use of graphical modeling capabilities of
UML, an ODM should have a corresponding UML Profile [16]. This profile enables
graphical editing of ontologies using UML diagrams as well as other benefits of using
mature UML CASE tools. Both UML models and ODM models are serialized in XMI
format so the two-way transformation between them can be done using XSL
Transformation. OWL also has representation in the XML format, so another pair of
XSL Transformations should be provided for two-way mapping between ODM and
OWL. For mapping from the Ontology UML Profile into another, technology-specific
UML Profiles, additional transformations can be added to support usage of ontologies
in design of other domains and vice versa.

4 Ontology UML Profile Essentials

UML Profile is a concept used for adapting the basic UML constructs to some
specific purpose. Essentially, this means introducing new kinds of modeling elements
by extending the basic ones, and adding them to the modeler’s tools repertoire. Also,
free-form information can be attached to the new modeling elements.

4.1 UML Profile Basics

The basic UML constructs (model elements) can be customized and extended with
new semantics by using four UML extension mechanisms defined in the UML
Specification [17]: stereotypes, tag definitions, tagged values, and constraints.
Stereotypes enable defining virtual subclasses of UML metaclasses, assigning them
additional semantics. For example, we may want to define the «OntClass»
stereotype, Figure 4, by extending the UML Class metaclass to denote the modeling
element used to represent ontologies (and not other kinds of concepts).

Tag definitions can be attached to model elements. They allow for introducing new
kinds of properties that model elements may have and are analogous to metaatribute
definitions. Each tag definition specifies the actual values of properties of individual
model elements, called tagged values. Tag definitions can be attached to a stereotype
to define its virtual metaattributes. For example, the «OntClass» stereotype in
Figure 4 has a tag definition specifying 4 tagged values (for enumeration, intersection,
etc.).

Constraints make possible to additionally refine the semantics of the modeling
element they are attached to. They can be attached to each stereotype using OCL
(Object Constraint Language) [17] or English language (i.e. spoken language) in order
to precisely define the stereotype’s semantics (see the example in Figure 4).

More details about UML extension mechanisms can be found in [17] and [18].
A coherent set of extensions of the basic UML model elements, defined for

specific purposes or for a specific modeling domain, constitutes a UML profile.

 A UML Profile for OWL Ontologies 209

Fig. 4. New stereotype definition

4.2 Design Rationale for Ontology UML Profile

In order to customize UML for modeling ontologies, we define UML Profile for
ontology representation, called Ontology UML Profile. In developing our Ontology
UML Profile we used experiences of other UML Profile designers (e.g., see [19]).
Applying such experiences to our case, we wanted our Ontology UML Profile to:

• offer stereotypes and tags for all recurring ontology design elements, such as
classes, individuals, properties, complements, unions, and the like;

• make specific ontology modeling and design elements easy to represent on
UML diagrams produced by standard CASE tools, thus keeping track of
ontological information on UML models;

• enable encapsulating ontological knowledge in an easy-to-read format and
offer it to software engineers;

• make possible to evaluate ontology UML diagrams and to indicate possible
inconsistencies;

• support Ontology Definition Metamodel, hence be able to represent all ODM
concepts.

Currently, several different approaches to ontology representation in UML have
been proposed. We note two major trends among them:

• Extending UML with new constructs to support specific ontology concepts
(Property for example) [20].

• Using standard UML and defining a UML Profile for ontology representation
[21].

We believe that ontology representation in UML can be achieved without non-
standard UML extensions, hence our approach belongs to the latter of the above two
trends. In our Ontology UML profile, specific ontology concepts are annotated using
the standard UML extension mechanisms described above. Models created with such
a UML Profile will be supported by standard UML tools, since they do not add non-
standard concepts to UML, thus they are UML models. Since in our approach UML is

210 D. Djuri et al.

used to support ODM, not as a stand-alone tool for ontology modeling, Ontology
UML Profile will not cover all of the essential ODM (Ontology Definition
Metamodel) concepts. Ontology UML Profile should define only constructs for
concrete concepts, such as ObjectProperty, Class or Individual, leaving
ODM to deal with abstract constructs like Resource, Instance, Classifier,
etc, which are not used in development of real ontologies (models), and do not relate
to real-world things; they are only introduced to ODM in order to create a coherent
hierarchy.

A UML Profile definition in the context of the MDA four-layer metamodeling
architecture means extending UML at the metamodel layer (M2). One can understand
these extensions as a new language, but also UML as a family of languages [3]. Each
of these languages uses UML notation with the four UML extension mechanisms.
Recent UML specifications [17] enable using graphical notation for specifying
stereotypes and tagged definitions [22]. Thus, all stereotypes and tagged values that
are defined in this paper can be shown in this way.

The notation used for stereotype creation of Ontology UML Profile («OntClass»
stereotype) accomodetes UML’s Class («metaclass»). Having this graphical
notation for the UML extension mechanism can be useful for explaining certain
relations between UML constructs and new stereotypes, but also between stereotypes
themselves.

Since stereotypes are the principle UML extension mechanism, one might be
tempted to think that defining Ontology UML Profile is a matter of specifying a
couple of stereoptypes and using them carefully in a coherent manner. In reality,
however, it is much more complicated than that. The reason is that there is a number
of fine details to take care of, as well as the existence of some conceptual
inconsistencies between MDA and UML that may call for alternative design
decisions. The following subsections describe the most important Ontology UML
Profile concepts in detail.

4.3 Ontology Classes

Class is one of the most fundamental concepts in ODM and Ontology UML Profile.
As we noted in the discussion about the essential ODM concepts, there are some
differences between traditional UML Class or OO programming language Class
concept and ontology class as it is defined in OWL (owl:Class). Fortunately, we
are not trying to adopt UML as stand-alone ontology language, since that might
require changes to UML basic concepts (Class and other). We only need to
customize UML as a support to ODM.

In ODM, Ontology Class concept is represented as an instance of MOF Class,
and has several concrete species, according to the class description: Class,
Enumeration, Union, Intersection, Complement, Restriction, and a
special built-in OWL class AllDifferent. These constructs in the Ontology UML
Profile are all inherited from the UML concept that is most similar to them, UML
Class. But, we must explicitly specify that they are not the same as UML Class,
which we can do using UML stereotypes. An example of Classes modeled in
Ontology UML Profile is shown in Figure 5.

 A UML Profile for OWL Ontologies 211

Fig. 5. Class Diagram showing relations between Ontology Classes and Individuals in the
Ontology UML Profile

ODM Class identified by a class identifier will have the stereotype
«OntClass», AllDifferent - «AllDifferent» and Restriction -
«Restriction». In ODM, Enumeration, Intersection, Union and
Complement are descendants of ODM Class; in Ontology UML Profile they have
stereotypes «Enumeration», «Intersection», «Union» and
«Complement». The «OntClass» stereotype would be extended by each of these
new stereotypes. Additionally, enumeration, intersection, union and complement are
defined by Boolean tagged values - enumeration, intersection, union and complement,
which can be added to «OntClass» with the constraint that only one of them can be
true. This would be similar to the solution used in other UML profiles. A good
example is the XML Schema UML profile [23] that has stereotypes for modeling the
content model of the XML Schema complex type: any, choice, and sequence.
Complex type itself is a distinct stereotype as well. Also, in parallel with these

212 D. Djuri et al.

stereotypes, there is a tagged value modelGroup attributed to the complex type
stereotype that can take a value from the set consisting of: any, choice, and sequence.

Figure 5 shows various types of ontology classes modeled in UML.
The Class Person is an example of an ontology Class that is identified by
a class identifier, TheRollingStones and TheWailers are
enumerations, StonesWailersIntersection is an intersection, and
StonesWailersUnion is a union. There is one unnamed class that represents
complement of TheWailers – all individuals that are not members of
TheWailers. AllDifferent is an auxiliary class whose members are different
individuals. Also shown is an «OntClass» Human and the Dependency
«equivalentClass», which means that Person and Human are classes that
have the same class description (i.e. all Persons are Humans and vice versa). The
names of classes whose name is not important could be automatically generated by
the tool, and not shown in the diagram.

4.4 Individuals

In ODM, an instance of an AbstractClass is called Individual. In UML, an
instance of a Class is an Object. ODM Individual and UML Object have
some differences, but they are similar enough, so in Ontology UML Profile,
Individual is modeled as UML Object, which is shown in Figure 5. The
stereotype for an object must match the stereotype for its class («OntClass» in this
case). Stating that some Individual has some type is done in three ways:

1. by using an underlined name of an Individual followed by “:” and its
«ontClass» name (for example, Mick:Person is an Individual whose type
is Person. This is the usual UML method of stating an Object’s type.

2. by using a UML Dependency’s stereotype «instanceOf» between an
Individual and its «ontClass». This method is also allowed in standard
UML. For example, Mick is an instance of TheRollingStones.

3. indirectly – through logical operators on «OntClass». If some «OntClass» is
a union, intersection or complement, it is a class of Individuals
that are not explicitly defined as its instances. For example, Mick is not
explicitly defined as a member of StonesWailersUnion, but it is its member
since he is a member of TheRollingStones, which is connected with
StonesWailersUnion through a «unionOf» connection.

Although there are some UML tools (Together, Visio) that allow relations between
a UML Class and a UML Object in a UML Class Diagram, many popular UML tools
(e.g. Rational Rose, Poseidon for UML) do not support this, even though the UML
specification [17] clearly states that Objects and Links can be drawn on Class
Diagrams. The authors believe that this is closely related to understanding UML as a
graphical notation for modeling and using it with object-oriented programming
languages. Another very important issue is related to the MDA metamodeling
architecture. UML classes are usually thought of as belonging to the model layer
(M1), whereas UML objects are believed to belong exclusively to the instance level

 A UML Profile for OWL Ontologies 213

(M0). But, this is not quite correct: the UML class and object are defined at the same
MDA layer (i.e. M2). Thus, their instances are at the same layer – the model layer
(i.e. M1). Actually, a UML object models a thing from the real world [24]. But,
objects only model real world things; they are not real things (e.g. in Figure 5 the
object Mick only models an instance of Human). Then, how can we distinguish
between the instance-of relation between objects and classes, and, on the other hand,
between UML Class (metaclass) and some concrete class? We believe that Atkinson
and Kühne [25] have adequately proposed the solution to this problem by introducing
two kinds of instance-of relations: linguistic and ontological. The linguistic instance-
of relation is the instance-of relation between concepts from different layers (UML
Class definition and some concrete class, for instance TheWailers). The
ontological instance-of relation is the instance-of relation between concepts that are at
the same linguistic layer, but which are at different ontological layers (for instance,
<<OntClass>> Person and object Keith are at different ontological layers since
Human is the class (type) of Keith).

4.5 Ontology Properties

Property is one of the most unsuitable ontology concepts to model with object-
oriented languages and UML. The problem arises from the major difference between
Property and its similar UML concepts – Association and Attribute.
Since Property is an independent, stand-alone concept, it can not be directly
modeled with Association or Attribute, which can not exist on their own.
Some authors [20] suggested extending UML with new constructs to support the
stand-alone Property, introducing aspect-oriented programming concepts into
UML. In our view, this solution is rather extreme, since it demands non-standard
changes to UML. We try to introduce Property in UML in some other way instead.

Since Property is a stand-alone concept it can be modeled using a stand-alone
concept from UML. That concept could be the UML Class’ stereotype
«Property». However, Property must be able to represent relations between
Resources (Classes, Datatypes, etc. in the case of UML), which the UML
Class alone is not able to do. If we look at the ODM Property definition more
closely, we will see that it accomplishes relation representation through its range
and domain. According to the ODM Model, we found that in the Ontology UML
Profile, the representation of relations should be modeled with UML
Association’s or UML Attribute’s stereotypes «domain» and «range». In
order to increase the readability of diagrams, the «range» association is
unidirectional (from a Property to a Class).

ODM defines two types (subclasses) of Property – ObjectProperty and
DatatypeProperty. ObjectProperty, which can have only Individuals
in its range and domain, is represented in Ontology UML Profile as the Class’
stereotype «ObjectProperty». DatatypeProperty is modeled with the
Class’ stereotype «DatatypeProperty».

An example of a Class Diagram that shows ontology properties modeled in UML
is shown in Figure 6. It contains four properties: two «DatatypeProperty»s

214 D. Djuri et al.

(name and socialSecurityNumber) and two «ObjectProperty»s
(nationality and colleague) UML Classes. In cooperation with
«domain» and «range» UML Associations, or «domain» and «range»
UML Attributes, they are used to model relationships between «OntClass»
UML Classes. Tagged values describe additional characteristics, for example,
«ObjectProperty» colleague is symmetric (if one Person is a colleague
of another Person, the other Person is also a colleague of the first Person)
and transitive (if the first Person is a colleague of the second Person, who is a
colleague of the third Person, the first and third Person are colleagues). In ODM,
these characteristics are added to an ODM Class applying the Decorator Design
Pattern [26]. The transformation that maps an Ontology UML Profile model to an
ODM model should create one decoration of an ODM Property per attribute of
Ontology UML Profile «ObjectProperty» or «DatatypeProperty».

There is an important issue that must be clarified with this diagram. In UML,
relations are represented by Associations (graphically represented as lines) or
Attributes, which looks nice and simple. Ontology UML Profile diagrams may
look overcrowded, since each relation requires a box and two lines to be properly
represented. The solution shown in this paper uses standard graphical symbols, but
UML allows custom graphical symbols for a UML Profile. For example, a custom
graphical symbol for Property could be a tiny circle with lines, which reduces the
space on diagrams. Also, additional custom settings, like distinct colors for
«OntClass» (green), «ObjectProperty» (orange) or «DatatypeProperty»
(orange) in this paper, can be used to increase the diagram readability. For the sake of
readability, this UML Profile allows two styles of «DatatypeProperty» domain
and range presentation. An example of the first style (a UML Class with two UML
Associations) is socialSecurityNumber, and an example of the second
one (a Class with Attributes as domain or range) is name. The second style is
allowed only for «DatatypeProperty» whose range multiplicity is equal or less
than one. So, if a «DatatypeProperty» has range multiplicity of 0..1 or 1, the
style with Attributes can be used to reduce the clutter.

Fig. 6. Ontology Properties shown in UML Class Diagram

 A UML Profile for OWL Ontologies 215

4.6 Statement

ODM Statement is a concept that represents concrete links between ODM
instances – Individuals and DataValues. In UML, this is done through Link
(an instance of an Association) or AttributeLink (an instance of an
Attribute). Statement is some kind of instance of a Property, which is represented
by the UML Class’ stereotype («ObjectProperty» or
«DatatypeProperty»). Since in UML a Class’ instance is an Object, in
Ontology UML Profile Statement is modeled with Object’s stereotype
«ObjectProperty» or «DatatypeProperty» (stereotype for Object in
UML must match the stereotype for its Class’ stereotype). UML Links are used
to represent the subject and the object of a Statement. To indicate that a Link is the
subject of a Statement, LinkEnd’s stereotype «subject» is used, while the object
of the Statement is indicated with LinkEnd’s stereotype «object». LinkEnd’s
stereotype is used because in UML Link can not have a stereotype. These Links
are actually instances of Property’s «domain» and «range». In brief, in Ontology
UML Profile Statement is represented as an Object with two Links – the
subject Link and the object Link, which is shown in Figure 7. The represented
Persons Mick and Keith are colleagues. They both have UK (Great Britain)
nationality.

Fig. 7. Individuals and Statements shown in a UML Object Diagram

As with Ontology Properties, the diagram’s readability can be further increased by
using distinct colors and custom graphical symbols. A tiny circle can be used instead
of the standard box for representing the Statement in order to reduce clutter on a
diagram.

5 Tool Support

In this section we describe our XSLT-based implementation for transforming OUP
into OWL [27]. A UML tool (e.g. Poseidon for UML) can export an XMI document
that an XSLT processor can use as the input. An OWL document is produced as the
output, and this format can be imported into a tool specialized for ontology

216 D. Djuri et al.

development (e.g. Protégé), where it can be further refined. On the other hand, since
we obtain an OWL described document, we do not need to use any ontology tool,
instead we are able to use this ontology description as a final OWL ontology.
Furthermore, when we use an approach based on XSLT (the XSLT principle) we do
not need to change (i.e. recompile) a UML tool, but we just apply an XSLT on an
output document of the UML tool. Accordingly, we can use well-defined XML/XSLT
procedure that is shown in Figure 8.

Fig. 8. Used XSLT principle: extensions of present UML tools for ontology development

The XSLT, which we have implemented for mapping from the OUP XML format
(i.e. UML XMI) to the OWL description, contains a set of rules (i.e. templates) that
match XMI constructs and transform them into equivalent OWL primitives. While
developing these rules we faced some serious obstacles resulting from evident
differences between source and target format. We note some of them:

− The structure of an XMI document is fairly awkward since it contains full
description of an UML model.

− The OUP, in some cases, uses more than one UML construct to model one OWL
element.

− UML tools can only draw UML models, but they do not have an ability to check
the completeness of an OUP ontology. Thus, the XSLT is incurred to check XMI
documents. This is the only way to avoid generation of erroneous OWL
ontologies.

− The XSLT must make difference between classes that are defined in other classes
(nested classes that can not be referenced from other classes using their ID) and
classes that can be referenced using their ID. Accordingly, we included the
odm.anonymous tagged value into OUP. This tagged value helps detect these two
cases.

The developed solution acts as an extension for standard UML tools and thus
enables us to create complete OWL ontologies without need to use ontology-
specialized development tools. We have decided to use Poseidon for UML since it
supports all requirements for OUP. We decide to generate OWL ontologies in the
fashion similar to the Protégé’s OWL plugin. Hence, we have managed to provide an

 A UML Profile for OWL Ontologies 217

additional way to import Poseidon’s models into Protégé through the OWL. Of
course, since Protégé has more advanced features for ontology development, an OUP-
defined ontology can be further refined.

We have tested our solution on the well-known example of the Wine ontology.
Firstly, we represented this ontology in Poseidon using OUP. Then we exported this
extended UML into XMI, and after performing the XSLT, we obtained an OWL
document. Finally we imported this document into Protégé using its OWL plugin.

The current XSLT version has a limitation since it does not support packages (i.e.
the OUP multi-ontology development). Actually, OUP supports multiple ontologies
within the same XMI project, but the XSLT standard and XSLT processors introduce
this limitation.

So far, we have developed two ontologies using OUP that we later transformed in
OWL using the XSLT. These two ontologies are: the ontology of saints and
philosophers, and the Petri net ontology. The first ontology was developed using the
Porphyry's tree method. The Petri net ontology was developed in order to provide the
Semantic Web support for Petri nets [28].

6 Conclusions

The Ontology UML Profile defined in this paper and ODM are in accordance with the
OMG’s RFP initiative for ontology modeling. Accordingly, we borrowed the name
ODM for our metamodel from the OMG’s RFP. The proposed solution enables using
ontologies in the way that is closer to software engineering practitioners. Also, since
the UML and ODM are defined as MOF-compliant languages it is possible to store
ontologies in MOF-based repositories, to store ontology diagrams in a standard way
(UML2 XMI), as well as to share and interchange ontologies using XMI.

The proposed Ontology UML Profile can be considered as a part of the effort to
specify standard ontology metamodel. Their important feature is that they are based
on OWL. With the Ontology UML Profile, the ODM concepts can be used as
stereotypes in the UML models (similar to UML CORBA Profile or other OMG’s
UML Profiles).

The possibilities of defining other AI metamodels in MOF should and will be
explored in the future work. This means that MDA and MOF will be the integrating
point for metamodels, both common and AI-related. Another important research
direction is to examine the usability of the proposed OUP on real-world ontologies.
Further plans also include using Java Metadata Interface (JMI) [29] to enable
creation, storage, access, discovery, and exchange of ODM-defined ontologies using
standard Java interfaces.

References

1. Gruber, T. R.: A translation approach to portable ontology specifications, Knowledge
Acquisition, Vol. 5, No. 2 (1993) 199-220

2. Cranefield, S.: Networked Knowledge Representation and Exchange using UML and
RDF, Journal of Digital information, Vol. 1, No.8 (2001) http://jodi.ecs.soton.ac.uk

218 D. Djuri et al.

3. Duddy, K.: UML2 Must Enable A Family of Languages, Communications of the ACM,
Vol. 45, No. 11, (2002) 73-75

4. Berners-Lee, T: Weaving the Web, Orion Business Books, London (1999)
5. Brickley, D. and Guha, R. V. (eds.): RDF Vocabulary Description Language 1.0: RDF

Schema, W3C Recom., http://www.w3.org/TR/2000/CR-rdf-schema-20000327 (2004)
6. Berners-Lee, T.: Semantic Web Road Map, W3C Design Issues,

http://www.w3.org/DesignIssues/Semantic.html, (1998)
7. Bray, T., et al (eds.): Extensible Markup Language (XML) 1.0 (Second Edition), W3C

Recommendation, http://www.w3.org/TR/2000/REC-xml-20001006 (2000)
8. Bechhofer, S. et al: OWL Web Ontology Language Reference, W3C Recommendation,

http://www.w3.org/TR/2004/REC-owl-ref-20040210 (2004)
9. Miller, J., Mukerji, J. (eds.): MDA Guide Version 1.0, OMG Document: omg/2003-05-01,

http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf (2003)
10. Meta Object Facility (MOF) Specification v1.4, OMG Document formal/02-04-03,

http://www.omg.org/cgi-bin/apps/doc?formal/02-04-03.pdf (2002)
11. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide,

Addison-Wesley, Massachusetts (1998)
12. OMG XMI Specification, v1.2, OMG Document formal/02-01-01,

http://www.omg.org/cgi-bin/doc?formal/2002-01-01 (2002)
13. Gaševi , D., Damjanovi , V., Devedži , V.: Analysis of the MDA Standards in

Ontological Engineering, In Proceedings of the 6th International Conference of
Information Technology, Bhubaneswar, India (2003) 193-196

14. Ontology Definition Metamodel Request for Proposal, OMG Document: ad/2003-03-40,
http://www.omg.org/cgi-bin/doc?ad/2003-03-40 (2003)

15. Djuri , D. Gaševi , D., Devedži , V.: Ontology Modeling and MDA, Journal on Object
Technology, Vol. 4, No. 1 (2005) forthcoming

16. Sigel, J.: Developing in OMG’s Model-Driven Architecture, Revision 2.6, Object
Management Group White Paper, ftp://ftp.omg.org/pub/docs/-omg/01-12-01.pdf (2001)

17. OMG Unified Modeling Language Specification, OMG Document formal/03-03-01,
http://www.omg.org/cgi-bin/apps/doc?formal/03-03-01.zip (2003)

18. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual, Addison-Wesley (1998)

19. Juerjens, J.: Secure Systems Development with UML. Springer-Verlag, Berlin (2003)
20. Baclawski, K. et al: Extending the Unified Modeling Language for ontology development,

Journal on Software and Systems Modeling, Vol. 1, No. 2 (2002) 142-156
21. Baclawski, K. et al: UOL: Unified Ontology Language, Assorted papers discussed at the

DC Ontology SIG meeting, http://www.omg.org/cgi-bin/doc?ontology/2002-11-02 (2002)
22. Kobryn, C.: The Road to UML 2.0: Fast track or Detour, Software Development

Magazine, http://www.sdmagazine.com/documents/s=732/sdm0104b/0104b.htm (April
2001)

23. Carlson, D.: Modeling XML Applications whit UML: Practical E-Business Applications,
Addison-Wesley, Boston, USA (2001)

24. Atkinson, C., Kühne, T.: Rearchitecting the UML Infrastructure, ACM Transactions on
Modeling and Computer Simulation, Vol. 12, No. 4 (2002) 290–321

25. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation, IEEE
Software, Vol. 20, No. 5 (2003) 36-41

26. Gamma, E., et al: Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley (1995)

 A UML Profile for OWL Ontologies 219

27. Gaševi , D. et al: Converting UML to OWL ontologies, In Proceedings of the 13th
International WWW Conference, NY, USA (2004)

28. Gaševi , D. and Devedži , V.: Reusing Petri Nets Through the Semantic Web, In Proc. of
the 1st European Semantic Web Symposium Heraklion, Greece (2004)

29. Dirckze, R. (spec. leader): Java Metadata Interface (JMI) Specification Version 1.0,
http://jcp.org/aboutJava/communityprocess/final/jsr040/index.html (2002)

U. Aßmann, M. Aksit, and A. Rensink (Eds.): MDAFA 2003/2004, LNCS 3599, pp. 220 – 233, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Developing a UML Profile for Modelling
Knowledge-Based Systems

Mohd Syazwan Abdullah1,2, Chris Kimble1, Richard Paige1, Ian Benest1,
and Andy Evans1

1 Department of Computer Science, University of York,
Heslington, YO10 5DD, York, United Kingdom

{syazwan, kimble, paige, idb, andye}@cs.york.ac.uk
2 Faculty of Information Technology, Universiti Utara Malaysia,

06010 Sintok, Kedah, Malaysia
pathma@webmail.uum.edu.my

Abstract. Knowledge engineers have favoured a diagrammatic approach for
developing knowledge-based systems and have adopted those used in software
engineering. However, these modelling techniques tend to be used in an ad hoc
way and are highly dependent on the modelling experience of the engineers in-
volved. This paper focuses on the use of profiles for knowledge modelling that
are available in the Unified Modeling Language (UML). It identifies the short-
comings of current approaches to adopting UML and discusses the need for an
extension to UML using the profile mechanism. A profile based on the eXecu-
table Modelling Framework (XMF) is also presented as work-in-progress.

1 Introduction

The use and management of knowledge in enterprises has become a commercial ne-
cessity for many organisations, in order that they manage their corporate intellectual
assets and gain competitive advantage. Most knowledge resides in human memories
and managing it is seen as a human-oriented process rather than a technology-based
solution. Nevertheless, technology can be utilised as a knowledge management en-
abler by adopting software tools, including the internet and groupware systems. One
of the prominent tools in managing knowledge is the knowledge-based system (KBS).

Knowledge-based systems can be deployed as the technological means for captur-
ing and managing both explicit and tacit knowledge as part of an organisation’s
knowledge management initiative. But, before these can be built, the knowledge that
pervades the organisation must be identified and modelled using appropriate acquisi-
tion, representation and modelling techniques.

This paper is organised as follows: Section 2 generally describes knowledge-based
systems and the field of knowledge engineering. Section 3 gives an overview of the
rôle of knowledge modelling and the techniques that are currently used. Section 4
explains the need to have an extension to UML for modelling knowledge, while Sec-
tion 5 describes what is a UML profile. Section 6 presents the initial knowledge mod-
elling profile constructed using identified modelling concepts, while Section 7 con-
cludes and indicates the direction for future work.

 Developing a UML Profile for Modelling Knowledge-Based Systems 221

2 Knowledge-Based System and Knowledge Engineering

A knowledge-based system (KBS) is a software application with an explicit, declara-
tive description of knowledge for a certain application [1]. There is no single dividing
line that differentiates a KBS and an information/software system as almost all con-
tain knowledge elements within them [2]. An information system is a set of interre-
lated components that together collects, processes, stores, analyses, and disseminates
data and information in an organization. In contrast, a KBS has knowledge repre-
sented in an explicit form, and hence the increased importance of knowledge model-
ling [2] compared with that required of an information system.

The development process of a KBS is similar to any general system development;
stages such as requirements gathering, system analysis, system design, system devel-
opment and implementation are common activities. The stages in KBS development
are: business modelling, conceptual modelling, knowledge acquisition, knowledge
system design and KBS implementation [1].

A KBS is developed using knowledge engineering (KE) techniques [3]. These are
similar to software engineering (SE) techniques, but have an emphasis on knowledge
rather than data or information processing; they inherently advocate an engineering
approach to the process of developing a KBS. The central theme in this approach is
the conceptual modelling of the system in the analysis and design stages of the devel-
opment process. Many knowledge engineering (KE) methodologies have been devel-
oped with an emphasis on the use of models, for example CommonKADS [2], MIKE
[4], Protégé [5], and KARL [4].

Traditional KE techniques were widely used to construct expert systems – systems
built from the knowledge of one or more experts – essentially, a process of knowledge
transfer [3]. This is the development process of the first generation of expert systems,
in which the knowledge of the expert is directly transferred into the knowledge base
in the form of rules. The disadvantage of this approach is that the knowledge of the
expert is captured in the form of hard codes within the system with little understand-
ing of how they are linked or connected with each other [2]. This creates a new prob-
lem if the knowledge base is to be updated as changes require substantial effort in
reconstituting the coded rules in order to implement the needed changes.

KE is no longer simply a means of mining the knowledge from the expert’s head
[2]. It now encompasses “methods and techniques for knowledge acquisition, model-
ling, representation and use of knowledge” [2]. The shift towards the modelling ap-
proach has also enabled knowledge to be re-used in different areas of the same do-
main [3]. In the past, most knowledge systems had to be developed from scratch
every time a new system was needed, and it could not interact with other systems in
the organization. The paradigm shift towards a modelling strategy has resulted in
reducing development costs [2].

3 Knowledge Modelling

Knowledge modelling is used in knowledge acquisition activities as a way of structur-
ing projects, acquiring and validating knowledge and storing knowledge for future use
[6]. Knowledge models are structured representations of knowledge. They use sym-

222 M.S. Abdullah et al.

bols to represent pieces of knowledge and their relationships. Knowledge models are
as follows: (1) symbolic character-based languages – logic; (2) diagrammatic repre-
sentations – networks and ladders; (3) tabular representations – matrices and frames
and (4) structured text – hypertext. Most models are constructed from knowledge
objects such as concepts, instances, processes (tasks, activities), attributes and values,
rules and relations.

Knowledge representation is one of the fundamental topics in the area of artificial
intelligence (which investigates representation techniques, tools and languages).
Knowledge about the domain and the implementation independent reasoning-process
of the KBS however is usually addressed through the use of ontologies and problem-
solving methods. There are five prominent representation techniques widely used in
developing KBSs; they are: attribute-value pairs, object-attribute-value triplets, se-
mantic networks, frames and logic.

By analysing the knowledge objects and representation techniques described ear-
lier in this section, it will be noticed that they have similar concepts to those adopted
for object-oriented modelling. Examples of these concepts are: objects, attributes,
class, subclass, relationship, instances and others. Though these concepts have differ-
ent meanings in different techniques, in most cases they refer to a similar thing. This
paves the way to consider using object-oriented techniques as the standard means of
representing them.

3.1 Ontology and Problem-Solving Method

Ontologies and Problem-Solving Methods (PSMs) enable the construction of KBSs
through reusable components across domains and tasks [7]. Systems developers in the
KE community are currently trying to adopt component-based development by incor-
porating ontologies and PSMs in order to deploy KBSs faster.

Ontologies are used to represent domain knowledge in knowledge-based programs.
This is achieved using formal declarative representations of the domain knowledge;
that is sets of objects and their describable relationships [8]. In the context of
knowledge modelling, ontology defines the content-specific knowledge representation
elements such as domain-dependent classes, relations, functions and object constants
[7]. Researchers in the area of conceptual modelling and knowledge modelling have
started to realise the importance of ontology in developing domain models since the
underlying principle of modelling is to achieve agreed representations in a unified
manner for the domains in which they are investigating. The works of Gomez-Perez
and Benjamins [7], Gruber [8] and Kende [9] demonstrate such efforts to use
ontologies.

PSMs describe the reasoning-process (generic inference patterns) at an abstract
level independent of the representation formalism (e.g. rules, frames etc.) [5], [7].
PSMs have influenced the leading knowledge-engineering frameworks such as Task
Structures, Rôle-Limiting Methods, CommonKADS, Protégé, MIKE, Components of
Expertise, EXCEPT, GDM and VITAL [7]. Most of these frameworks suggest that a
PSM: decomposes the whole reasoning task into elementary inferences that are easy
to understand, defines the types of knowledge that will be used by the inference steps
to be completed, and defines the control mechanisms and flow of knowledge among
the inferences.

 Developing a UML Profile for Modelling Knowledge-Based Systems 223

3.2 Knowledge Modelling Techniques

The importance of knowledge modelling in developing KBSs has been discussed by
Schreiber et al [2]. They argue that models are important for understanding the work-
ing mechanisms within a KBS; such mechanisms are: the tasks, methods, how knowl-
edge is inferred, the domain knowledge and its schemas. Modelling contributes to the
understanding of the source of knowledge, the inputs and outputs, the flow of knowl-
edge and the identification of other variables such as the impact that management
action has on the organizational knowledge. Using conceptual modelling, systems
development can be faster and more efficient through the re-use of existing models
for different areas of the same domain. Therefore, understanding and selecting the
modelling technique that is appropriate for different domains of knowledge will en-
sure the success of the KBS being designed.

Amongst the many techniques used to model knowledge, the most common are
CommonKADS, Protégé 2000, the Unified Modeling Language (UML), and Multi-
perspective modelling.

CommonKADS has become the de facto standard for knowledge modelling and is
used extensively in European research projects. It supports structured KE techniques,
provides tools for corporate knowledge management and includes methods that per-
form a detailed analysis of knowledge intensive tasks and processes. A suite of mod-
els is at the core of the CommonKADS methodology [2]. The suite supports the mod-
elling of the organization, the tasks that are performed, the agents that are responsible
for carrying out the tasks, the knowledge itself, the means by which that knowledge is
communicated, and the design of the knowledge management system. Common-
KADS incorporates an object-oriented development process and uses UML notations
such as class diagrams, use-case diagrams, activity diagrams and state diagrams.
CommonKADS also has its own graphical notations for task decomposition, inference
structures and domain schema generation [2].

It has become a trend for system developers and researchers in KE to adopt object
oriented modelling in developing conceptual models for knowledge systems [10] [11]
[12]. A careful analysis of the literature shows that they have all been influenced by
CommonKADS – an approach that is highly favoured, since it encourages the use of
object-oriented development and the notations from UML.

Protégé was developed for domain specific applications [5] at Stanford Medical In-
formatics. Protégé 2000 is defined as “an extensible, platform-independent environ-
ment for creating and editing ontologies and knowledge bases” [13]. The Protégé
2000 knowledge modelling environment is a frame-based ontology editing tool with
knowledge acquisition tools that are widely used for domain modelling.

The Unified Modeling Language (UML) together with the Object Constraint Lan-
guage (OCL) is the d-facto standard for object modelling in software engineering as
defined by the Object Management Group (OMG). UML is a general-purpose model-
ling language that covers a wide spectrum of different application domains. UML is
incorporated in other mainstream techniques such as CommonKADS and Multi-
perspective modelling for knowledge modelling purposes. Multi-perspective model-
ling enables a number of techniques to be used together, each technique being the
most appropriate for modelling that particular aspect of knowledge [14]. It has its
roots in software engineering (multiple-view technique).

224 M.S. Abdullah et al.

3.3 Current Trends

Although KBSs are developed using knowledge engineering techniques, the model-
ling aspects of it are largely dependent on software engineering modelling languages.
Most of the modelling techniques adopted, use a mix of notations derived from differ-
ent modelling languages. The object-oriented paradigm has influenced systems
development activities in software engineering and this trend has also been reflected
in knowledge engineering methodologies such as CommonKADS [2], MOKA [12]
and KBS developments in general [10], [15] and [16]. However, the main adopters of
UML for knowledge modelling are CommonKADS [2] and MOKA [12]. The MOKA
Modelling Language (MML) is an extension of UML that represents engineering
product design knowledge at a user level for deployment in knowledge-based engi-
neering applications. It provides default meta-models for the product and design proc-
ess so as to manage engineering knowledge. However, it is an informal extension to
UML and does not fulfill the OMG’s requirements for an extension mechanism; these
are presented in section 5.

Object oriented methods are gaining in popularity because of their expressiveness,
flexibility and ease-of-use. One of UML’s important features is that it is an extensible
language brought about by the application of profiles. This makes UML one of the
favoured techniques for knowledge modelling, for both the methodological aspect of
KBS development and its standardisation. Thus, extensions to UML, can be formally
introduced using UML Profiles for knowledge modelling.

4 Need for UML Extension

The major problem with knowledge modelling is that there is no standard technique
available to model the knowledge for developing a knowledge-based system. Most of
the techniques used by the researchers in the field of knowledge engineering are
adapted from the software engineering community. The techniques used in knowledge
modelling are project based using a mix of notations such as UML, IDEF, SADT,
OMT, Multi-perspective Modelling and so on. Examples mentioned earlier are the
CommonKADS methodology and Multi-perspective Modelling. Having recognised
the importance of standardising knowledge modelling, OMG have started to work on
the process of production rule representation [17] and knowledge-based engineering
services for engineering design [18]. Benefits of having a standardised approach are:
better tool support for designing the conceptual models, a large user base that is famil-
iar with the language, and training is made easier by having many related publications
focused on the standard. Furthermore, with a standards body monitoring evolving use,
the standard remains live and relevant to industry.

Knowledge system projects are extremely specialised, requiring the team members
to have knowledge of both the problem domain and the development tools. As a result
the team members are highly skilled individuals, and this poses a great problem to the
overall project if they should leave the team early in the development or maintenance
period [19]. Having a standard modelling notation would help overcome such
problems as new team members could quickly comprehend the design of the system.

 Developing a UML Profile for Modelling Knowledge-Based Systems 225

Another important factor to consider is that many system analysis and design
courses these days are teaching object-oriented modelling techniques as a tool for
systems modelling and development. The main influence is the growing importance
of object-oriented programming languages like Java in systems development. Because
of the formal training received and the adoption of object-oriented programming by
this generation of system analyst, most will have the knowledge of UML and use it
for modelling purposes.

In addition to this, enterprise systems these days are an integration of software
tools built on different platforms with the ability to communicate with each other.
Most of these systems especially the new ones are built on platforms that support
object-oriented languages, model driven architectures, object-based modelling etc.
Knowledge-based systems are no longer stand-alone systems, but are part of the en-
terprise group of systems. As there is no standard way of modelling knowledge sys-
tems using knowledge engineering techniques, there is a need to extend those that
have been standardised in software engineering. This promotes the use of a common
modelling language, so that the vision of integration, reusability and interoperability
within an enterprise’s system will be achieved. It is proposed to model knowledge
using an extension to UML.

UML is widely adopted as the object oriented way for systems development and
has been deployed in other domains such as real-time systems, hypermedia design,
embedded systems and ontology modelling. There are arguments that UML semantics
are not well defined [20][21] compared to formal methods and these are being ad-
dressed by the OMG in developing UML version 2.0. This new version will have
enhanced meta-model concepts and improved semantics. Developing UML Profiles
for knowledge modelling will enable KBS developers to use UML in a formal and
systematic manner. This can be achieved through the means of developing UML
profiles with precisely defined notations, semantics and syntax which together enable
this extension to be formally integrated into the existing profiles of UML (and adheres
to the profiles requirements proposed by OMG [22]).

The UML is a general-purpose modelling language that covers a wide range of dif-
ferent application domains. While this feature might be adequate for modelling in a
broader area, some domain-specific concepts and techniques need a more specialised
refinement to the existing construct of the language [22]. This is achievable through
the usage of the extension mechanism provided by UML known as a profile.

5 Profile Extension Mechanism

The OMG [23] has defined two mechanisms for extending the UML: profiles and
metamodel extensions both of which are known (confusingly) as profiles.

Profiles are sometimes referred to as the “lightweight” extension mechanism of
UML [22]. It contains a predefined set of Stereotypes, TaggedValues, Constraints,
and notation icons that collectively specialize and tailor the UML for a specific do-
main or process. The main construct in the profile is the stereotype that is purely an
extension mechanism. In the model, it is marked as <<stereotypes>> and has the same
structure (attributes, associations, operations) defined by the metamodel that describes
it. However, the usage of stereotypes is restricted. The semantics and the structure

226 M.S. Abdullah et al.

cannot be changed, and the introduction of new elements to the metamodel are not
permitted [24]. The “heavyweight” extension mechanism to UML known as the
metamodel extension is defined through the Meta-Object Facility (MOF) specification
[25] which involves the process of defining a new metamodel. Using this extension,
new metaclasses and metaconstructors can be added to the UML metamodel. This
extension is a more flexible approach as new concepts may be represented at the
metamodel level. So, profile based extensions must comply with the standard seman-
tics of the UML model, but no such restriction is imposed on the MOF based exten-
sions which can define a completely new metamodel.

UML Profile for Enterprise Application Integration (EAI), UML Profiles for
CORBA, UML Profile for Enterprise Distributed Object Computing (EDOC), UML
Testing Profile, and UML Profile for Schedulability, Performance and Time are some
of the formal profiles developed by OMG.

6 UML Knowledge Modelling Profile

The scope of the profile described below is adapted from [26]. The aim of the UML
Knowledge Modelling Profile is to define a language for designing, visualizing, speci-
fying, analyzing, constructing and documenting the artifacts of knowledge-based
systems. It is a knowledge modelling language that can be used with all major object
technologies and applied to knowledge-based systems in various application domains
and task types. The UML profile is based on the UML 2.0 specifications and is de-
fined by using the profile extension approach of UML. It is being designed with the
following principles in mind: UML integration - as a real UML based profile, the
knowledge modelling profile is based on the metamodel provided in the UML super-
structure and follows the principles of UML profiles as defined in UML 2.0.

6.1 Profile Design – XMF Approach

The XMF (eXecutable Meta-modelling Language) is an object-oriented meta-
modelling language, and is an extension to existing standards for meta-models such as
MOF, OCL and QVT, which are also defined by OMG. XMF exploits the features of
these standards and adds a new dimension that allows them to be executable using an
associated XMF software tool. The most comprehensive use of these standards are
seen in the UML in which its meta-models are described using MOF. Details of XMF
can be found in [27]. The XMF approach to profile creation can be divided into three
steps: the derivation of an abstract syntax model, a description of the semantics, and a
presentation of the profile’s concrete syntax. XMF supports stereotypes and tagged
values, but in a way that is significantly more controllable and powerful. XMF en-
ables “meta profiles” to be constructed, in which stereotyped elements are true in-
stances of specialised concepts.

Abstract Syntax
The abstract syntax model describes the concepts in the profile and their associations.
It defines the rules that determine its validity. The processes involved in creating the
abstract syntax model are:

 Developing a UML Profile for Modelling Knowledge-Based Systems 227

• Identifying the concepts including the related rules. Reusing an existing BNF defini-
tion of the profile domain is an alternative at this stage.

• Modelling concepts – this involves the process of creating an abstract syntax model
using the identified concepts.

• Defining the well-formed-ness rules of the profile in OCL – this will help in ruling
out illegal models.

• Defining the operation and the queries related to the profile.
• Validating and testing the profile using an object diagram and relevant tools.

Semantics
The semantics describe the meanings of concepts within the profile in terms of behav-
iour, static properties or how it may be translated into another language. The seman-
tics are a core part of the profile’s meta-model and replace formal (mathematical)
methods that are often difficult to comprehend by the majority of users and with
which it would be difficult to describe the interrelationships within the meta-model. In
XMF there are four types:

• Translational – concepts in one language are translated into the concepts of another
language, both of which have precise semantics.

• Denotational – modelling the mapping to semantic domain concepts.
• Operational – modelling the operational behaviour of language concepts.
• Extensional – extending the semantics of existing language concepts.

Concrete Syntax
The concrete syntax is a means of presenting the abstract syntax to end users of the
profile, using either textual or diagrammatic forms.

• The textual form of the profile is modelled using the Extended Backus-Naur Form
(EBNF).

• The diagrammatic form involves synchronised mapping between the modelling ele-
ments and the diagram elements (boxes, lines and shapes). This is a new technique in-
troduced into the meta-model by XMF.

The profile is designed based on the XMF specifications and is defined using the
meta-class sub-classing approach of the XMF core meta-model, XCore. This paper
only concentrates on the creation of the abstract syntax model of the profile. It ex-
cludes the processes of defining operations, queries and tool validation for the profile,
as these discussions are more appropriate when executing the models and this is not
the primary motivation of this paper.

6.2 Identification of Concepts

The discussion in this section mainly refers to the CommonKADS methodology for
KBS development [2]. Tasks are the main categorisation of action that need to be
performed by the KBS; typically this refers to the “what we want the system to do”.
Each task type will have their own terminology, task methods, inputs, outputs, infer-
ence mechanism being used, and the type of knowledge used; this is presented in [2].
Current studies on extending UML to model knowledge only concentrates on certain

228 M.S. Abdullah et al.

task types such as product design in MOKA [12] and UML-based product configura-
tion design [10]. There are no specific studies being conducted in creating a generic
profile that can be used for different task types; research now underway at York is
focusing on this work. The following important knowledge modelling concepts have
been identified from the literature [2] and are itemised in Table 1.

The authors believe that the level of abstraction is appropriate, and it naturally fits
a KBS design, which is based on the PSM and ontology discussed earlier. Of course
trying to maintain an overall picture of a complex system, including the interactions
between its parts, will remain difficult for a human to perform. A re-engineering of
the CommonKADS based system is also possible using the concepts from this profile.

6.3 Abstract Syntax Model

The abstract syntax of the knowledge modelling language has been derived using the
modelling concepts shown in Table 1. The CommonKADS language has been
adopted for specifying knowledge models that are defined in the BNF notation [2].
That BNF description has been translated into a UML model. In its current form it is a
model of the abstract syntax of a knowledge modelling language, becoming a com-
plete model of the language: a meta-model. Due to the size, and repetitive nature of
the concepts described using BNF, and the complexity of the model, it has been con-
densed to show only the important features of modelling knowledge concepts.

Table 1. Main Knowledge Modelling Concepts

Modelling Concept Description
Concept (class) Class that represents the category of things
Inference The lowest level of functional decomposition

consisting of primitive reasoning steps
Inference Method Method for implementing the inference
Transfer Function Transfers information between the reasoning agent

and external entities (system, user)
Task Defines the reasoning function
Task Method Describes the realization of the task through subfunc-

tion decomposition
Static Knowledge Role Specifies the collection of domain knowledge that is

used to make the inference
Dynamic Knowledge Role Run-time inputs and outputs of inferences
Rule Type Categorization and specification of knowledge
Rule Expressions that involve an attribute value of a

concept
Knowledge Base Collection of data stores that contains instances of

domain knowledge types

The Domain Concept package within the Knowledge Modelling package describes
the concept constructs of the profile that are related to knowledge elements. This
package is shown in Fig.1.

 Developing a UML Profile for Modelling Knowledge-Based Systems 229

Fig. 1. Domain Concept Package

The Knowledge Base package of the profile describes the modelling of a knowl-
edge base that represents instances of knowledge elements (instances of rule type)
within the domain concepts. These instances are important as they contain the actual
knowledge on which the KBS reasoning process is based. Knowledge elements
within the knowledge base are accessed by an inference through a static role. This
package is shown in Figure 2.

Fig. 2. Knowledge Base Package

The Inference package of the profile describes the inference, inference method,
task, task method, transfer function and both the static and dynamic knowledge roles.
The inference package plays a pivotal role in designing the KBS as it defines the
inference structure of the system, the type of knowledge used in the reasoning process
and the task associated with the execution of the inference. An important point to note
here is that the KBS is designed independently of the target implementation platform
and inference engines, overcoming the difficulties of reusing implementation specific
designs. This package is shown in Fig.3.

K n o w le d g e B a s e P a c k a g e

R u le T y p e

K n o w le d g e B a s e

R u le T y p e E x p re s s io n

T u p le

in p u t: S t r in g

S ta t ic R o le T a b le
(F ro m X M F)

C o n ta in e r
(F ro m X M F)

*
1 ..*

1 . .*

1 . .*

k n o w le d g e
e le m e n ts

tu p le s

e x p r e s s io n s

C o n s tra in t
(F ro m X M F)

D o m a in C o n c e p t P a c k a g e

T u p le

A x io m

C o n c e p t

C la s s
(F r o m X M F)

C o n s t r a in t
(F r o m X M F)

r o le

*

r u le s

*a x i o m s

D y n a m ic R o le

230 M.S. Abdullah et al.

Inference Package

Concept

name: String
input: String
output: String

Task

Class
(From XMF)

name: String
decomposition: String
intermediate role: string

Task Method

name: String
dynamic input: String
dynamic output: String
static role: String

Inference

communicationtype:
{provide, receive,
obtain, present}

Transfer Function

input: String

Static Roleinput: String
output: String
domain mapping: String

Dynamic Role

Knowledge
BaseClass

(From XMF)

method

1..*

0..1

*roles
roles

<<ordered>>

0..1

*

knowledge
elements

*

input

output

1..*

1..*

*

1..*

1..*

1..*

Fig. 3. Inference Package

R u le T yp e

R ule T ype

D ecis ion T ab le

C onstra in t R u le
T ype

C lass
(F rom X M F)

C lass
(F rom X M F)

na m e : S tr ing
an tece de n t: S trin g
con seq ue n t: S tr ing
con ne c tion : S trin g

Im plica tion R u le T ype

C lass
(F rom X M F)

*
*

ru les ru les
*

ru les

N am edE lem ent
(F rom X M F)

Fig. 4. Rule Type Package

 Developing a UML Profile for Modelling Knowledge-Based Systems 231

The Rule Type package (shown in Fig. 4) within the profile describes the model-
ling of rules. There are three types of rule: constraint rule, implication rule and deci-
sion table. A decision table is an addition to the used set of rule types. It is introduced
here because certain rules are best expressed in the form of a decision table. This
paper concentrates on rule-based KBSs; Case-Based Reasoning (CBR), fuzzy-based
logic, neural network systems are not considered here.

6.4 Model Extension

The knowledge modelling profile concept extends the existing meta-models of XMF
by defining the profile’s abstract syntax. There are five places where the profile can
be viewed as an extension to XMF and these are: Class, Container, Table, Named
Element and Constraints, all of which are central to the Core XMF meta-model.

The knowledge modelling class concept is viewed as a special class that is a sub-
class of the XMF Class. This enables the concept to inherit all the features of a class
and allows it to define additional constraints such as “concepts do not have any opera-
tions or methods”. The implication rule type, decision table and constraint rule type,
are also examples of this. The inference package of the profile (which has the task,
task method, inference, dynamic role, static role, and the transfer function concepts)
can be viewed as a subclass of an XMF Class. This allows operations related to ob-
jects to be expressed, such as an execute inference call from the task method, the
execution of the inference process and the access to knowledge in the knowledge base
through the static role and at the same time allows the inference package elements to
specify attributes.

Constraint class is a subclass of the XMF meta-model that incorporates profile
concepts such as axioms and rule type expressions. All these concepts need the ability
to express constraints and this class allows for this. Knowledge base is a subclass of
the Container class of XMF. It has a ‘content’ slot that is a table. This is a natural
choice for a subclass as the knowledge base is actually a collection of tables grouped
together in order to store rule type instances. The table class of XMF is extended to
incorporate the profile’s concepts of tuple.

7 Conclusion and Future Work

Managing knowledge through knowledge-based systems is an important part of an
enterprise’s knowledge management initiative. Knowledge-based systems have
evolved from being stand-alone machines to being part of the enterprise’s group of
systems. The process of constructing a KBS is similar to that required by other soft-
ware systems, with conceptual modelling playing an important role in the develop-
ment process. Software engineering has adopted UML as a standard for modelling,
but the field of knowledge engineering is still searching for the right technique. UML
can be adopted for knowledge modelling by exploiting the profile extension mecha-
nism defined by OMG. This paper has described the process of creating such an ex-
tension by basing the design of the knowledge modelling profile on that of the XMF
framework. This is a novel approach in profile design as the XMF approach is an
extension to existing standards for meta-modelling such as MOF, OCL and QVT,

232 M.S. Abdullah et al.

which are defined by OMG. The creation of a profile is important as it allows a KBS
to be designed using an object-oriented approach.

Developing a profile involves many steps as listed in Section 6 of this paper. The
future work in this area involves the specification of the profile’s well-formed-ness
rules, semantics and construction of the concrete syntax model. Both the latter activi-
ties involve the use of the XMF tool, which is in its final stage of development. The
profile will be validated using this tool and it is hoped to make the profile accessible
to all UML and MOF compliant tools. The profile’s ability to model the requirements
of KBSs has only been tested on a few simple case studies. Testing the profile in a
number of real-world situations would be beneficial, it would identify any limitations
and assist in the refinement of the profile. Together these case studies should provide
a wide range of applications in order to validate the generic nature of the profile.

Acknowledgement. The authors gratefully acknowledge the provision of a fellowship
from Universiti Utara Malaysia that has enabled this research to take place, and are
grateful to Xactium for early access to XMF. Details of XMF can be found at
http://albini.xactium.com.

References

1. Speel, P., Schreiber, A. Th., van Joolingen, W., and Beijer, G.: Conceptual Models for
Knowledge-Based Systems, in Encyclopedia of Computer Science and Technology. 2001,
Marcel Dekker Inc, New York.

2. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., de Velde,
W.V. and Wielinga, B.: Knowledge Engineering and Management: The CommonKADS
Methodology. 1999, Massachusetts: MIT Press.

3. Studer, R., Benjamins, R.V., and Fensel, D.: Knowledge Engineering: Principles and
Methods. Data & Knowledge Engineering, 1998. 25: p. 161-197.

4. Angele, J., Fensel, D., Landes, D., Studer, R.: Developing Knowledge-Based Systems with
MIKE. J of Automated Software Engineering, 1998. 5(4): p. 389-418.

5. Grosso, W.E., Eriksson, H., Fergerson, R.W., Gennari, S., Tu, S., Musen, M.A.: Knowl-
edge Modelling at the Millennium (The Design and Evolution of Protege 2000). 1999,
Stanford Medical Institute.

6. Milton, N.: Types of Knowledge Models. 2002. Accessed at http://www.epistemics.co.uk/
Notes/90-0-0.htm

7. Gomez-Perez, A., Benjamins,V.R.: Overview of Knowledge Sharing and Reuse Compo-
nents: Ontologies and Problem-Solving Methods. in IJCAI-99 Workshop on Ontologies
and Problem-Solving Methods (KRR5). 1999. Stockholm, Sweden.

8. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing.
1993, Report KSL-93-04, Stanford University.

9. Kende, R.: Knowledge Modelling in Support of Knowledge Management. Lecture Notes in
Artificial Intelligence, 2001. 2070: p. 107-112.

10. Felfernig, A., Friedrich, G.E., Jannach, D.: Generating product configuration knowledge
bases from precise domain extended UML models. in 12 th International Conference on
Software Engineering and Knowledge Engineering (SEKE'00). 2000. Chicago, USA.

 Developing a UML Profile for Modelling Knowledge-Based Systems 233

11. Manjarres, A., Pickin, S., Mira, J.: Knowledge model reuse: therapy decision through spe-
cialisation of a generic decision model. Expert Systems with Applications, 2002. 23(2):
p. 113-135.

12. Stokes, M., Managing Engineering Knowledge: MOKA - Methodology for Knowledge
Based Engineering Applications. 2001, London, UK: Professional Engineering and
Publishing Limited.

13. Protege,: Protege Frequently Asked Question. 2002. Accessed at http://protégé.stanford.
edu/faq.html

14. Kingston, J. and A. Macintosh, Knowledge management through multi-perspective model-
ling: representing and distributing organizational memory. Knowledge-Based Systems,
2000. 13: p. 121-131.

15. Chung, L., Subramaniam, N.: Adaptable architecture generation for embedded systems.
Journal of Systems and Software, 2003. 17(3): p. 271-295.

16. Kalogeropoulos, D.A., Carson, E.R., Colinson, P.O.: Towards Knowledge-Based Systems
in Clinical Practice: Development of an integrated Clinical Information and Knowledge
management Support System. Computer Methods and Programs in Biomedicine, 2003. 72:
p. 65-80.

17. OMG: Production Rule Representation- Request for Proposal. 2003
18. OMG: KBE Services for Engineering Design- Request for Proposal. 2004
19. Gill, G.T. Early Expert Systems: Where Are They Now?. MIS Quarterly, 19, 51-81.
20. Kobryn, C.: A Standardization Odyssey. Communications of the ACM, 1999. 42(10): p.

29-37.
21. Steimann, F., Kuhne, T.: A Radical Reduction of UML's Core Semantics. Lecture Notes in

Computer Science, 2002. 2460: p. 34-48.
22. OMG: Requirements for UML Profile. 1999.
23. OMG: Unified Modeling Language specification (version 1.4). 2001.
24. Perez-Martinez, J.E.: Heavyweight extensions to the UML metamodel to describe the C3

architectural style. ACM SIGSOFT Notes, 2003. 28(3).
25. OMG: MOF Specification version 1.4. 2002.
26. OMG: UML 2.0 Testing Profile specification. 2003.
27. Clark, T., Evans, A., Sammut, P., Willians, J.: Metamodelling for Model-Driven Develop-

ment (draft): To be published. 2005

Author Index

Abatlevi, Cem, 159
Abdullah, Mohd Syazwan, 220
Almeida, João Paulo, 174

Barzdins, Janis, 62
Benest, Ian, 220
Bézivin, Jean, 33
Bilir, Sevcan, 159
Blanc, Xavier, 17
Burmester, Sven, 47

Celms, Edgars, 62
Christoph, Dr. Alexander, 93

Damjanović, Violeta, 204
Devedžić, Vladan, 204
Dijkman, Remco, 174
Djurić, Dragan, 204

Evans, Andy, 220

Fondement, Frédéric, 123

Gašević, Dragan, 204
Gervais, Marie-Pierre, 17
Giese, Holger, 47

Hanenberg, Stefan, 77

Jouault, Frédéric, 33

Kalnins, Audris, 62
Kimble, Chris, 220
Koskimies, Kai, 108
Kurtev, Ivan, 139

Paige, Richard, 220
Pires, Lúıs Ferreira, 174

Rosenthal, Peter, 33

Siikarla, Mika, 108
Silaghi, Raul, 123
Sriplakich, Prawee, 17
Stein, Dominik, 77
Strohmeier, Alfred, 123
Systä, Tarja, 108

Tekinerdoğan, Bedir, 159
Tichy, Matthias, 47

Unland, Rainer, 77

Valduriez, Patrick, 33
van den Berg, Klaas, 139
van Sinderen, Marten, 174

Wagelaar, Dennis, 189

Zhao, Liping, 1

	Frontmatter
	Designing Application Domain Models with Roles
	Model Bus: Towards the Interoperability of Modelling Tools
	Modeling in the Large and Modeling in the Small
	Model-Driven Development of Reconfigurable Mechatronic Systems with {\sc Mechatronic~UML}
	Model Transformation Language MOLA
	A Graphical Notation to Specify Model Queries for MDA Transformations on UML Models
	Describing Horizontal Model Transformations with Graph Rewriting Rules
	Open MDA Using Transformational Patterns
	``Weaving'' MTL Model Transformations
	MISTRAL: A Language for Model Transformations in the MOF Meta-modeling Architecture
	Integrating Platform Selection Rules in the Model Driven Architecture Approach
	Platform-Independent Modelling in MDA: Supporting Abstract Platforms
	Context-Driven Model Refinement
	A UML Profile for OWL Ontologies
	Developing a UML Profile for Modelling Knowledge-Based Systems
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

